BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32218796)

  • 1.
    Zhang X; Ménard R; Li Y; Coruzzi GM; Heitz T; Shen WH; Berr A
    Front Plant Sci; 2020; 11():277. PubMed ID: 32218796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.
    Berr A; McCallum EJ; Alioua A; Heintz D; Heitz T; Shen WH
    Plant Physiol; 2010 Nov; 154(3):1403-14. PubMed ID: 20810545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana.
    Lin G; Zhou Y; Li M; Fang Y
    Sci China Life Sci; 2018 Feb; 61(2):225-234. PubMed ID: 28975546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana.
    Wang X; Chen J; Xie Z; Liu S; Nolan T; Ye H; Zhang M; Guo H; Schnable PS; Li Z; Yin Y
    Mol Plant; 2014 Aug; 7(8):1303-1315. PubMed ID: 24838002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants.
    Li Y; Mukherjee I; Thum KE; Tanurdzic M; Katari MS; Obertello M; Edwards MB; McCombie WR; Martienssen RA; Coruzzi GM
    Genome Biol; 2015 Apr; 16(1):79. PubMed ID: 25928034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development.
    Liu B; Berr A; Chang C; Liu C; Shen WH; Ruan Y
    Biochim Biophys Acta; 2016 Apr; 1859(4):581-90. PubMed ID: 26854085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development.
    Zhao W; Neyt P; Van Lijsebettens M; Shen WH; Berr A
    New Phytol; 2019 Jan; 221(2):1101-1116. PubMed ID: 30156703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana.
    Xu L; Zhao Z; Dong A; Soubigou-Taconnat L; Renou JP; Steinmetz A; Shen WH
    Mol Cell Biol; 2008 Feb; 28(4):1348-60. PubMed ID: 18070919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of
    Liu Y; Huang Y
    J Biol Chem; 2018 Apr; 293(17):6470-6481. PubMed ID: 29496997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases.
    Lee S; Fu F; Xu S; Lee SY; Yun DJ; Mengiste T
    Plant Cell; 2016 Jul; 28(7):1640-61. PubMed ID: 27354553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis.
    Dong G; Ma DP; Li J
    Biochem Biophys Res Commun; 2008 Sep; 373(4):659-64. PubMed ID: 18602372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis.
    Ma J; Li Q; Zhang L; Cai S; Liu Y; Lin J; Huang R; Yu Y; Wen M; Xu T
    J Integr Plant Biol; 2022 Dec; 64(12):2425-2437. PubMed ID: 36250442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SDG8-Mediated Histone Methylation and RNA Processing Function in the Response to Nitrate Signaling.
    Li Y; Brooks M; Yeoh-Wang J; McCoy RM; Rock TM; Pasquino A; Moon CI; Patrick RM; Tanurdzic M; Ruffel S; Widhalm JR; McCombie WR; Coruzzi GM
    Plant Physiol; 2020 Jan; 182(1):215-227. PubMed ID: 31641075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.
    Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z
    BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis.
    Choi SM; Song HR; Han SK; Han M; Kim CY; Park J; Lee YH; Jeon JS; Noh YS; Noh B
    Plant J; 2012 Jul; 71(1):135-46. PubMed ID: 22381007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae.
    Kim KC; Fan B; Chen Z
    Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Histone Demethylase IBM1 Positively Regulates
    Chan C; Zimmerli L
    Front Plant Sci; 2019; 10():1587. PubMed ID: 31956325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.
    Grini PE; Thorstensen T; Alm V; Vizcay-Barrena G; Windju SS; Jørstad TS; Wilson ZA; Aalen RB
    PLoS One; 2009 Nov; 4(11):e7817. PubMed ID: 19915673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana.
    Betsuyaku S; Katou S; Takebayashi Y; Sakakibara H; Nomura N; Fukuda H
    Plant Cell Physiol; 2018 Jan; 59(1):8-16. PubMed ID: 29177423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus.
    Jiang L; Li D; Jin L; Ruan Y; Shen WH; Liu C
    Plant J; 2018 May; ():. PubMed ID: 29797624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.