These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 32218868)
1. Upregulation of ASPM, BUB1B and SPDL1 in tumor tissues predicts poor survival in patients with pancreatic ductal adenocarcinoma. Tian X; Wang N Oncol Lett; 2020 Apr; 19(4):3307-3315. PubMed ID: 32218868 [TBL] [Abstract][Full Text] [Related]
2. Identifying Ding J; Liu Y; Lai Y PeerJ; 2020; 8():e10419. PubMed ID: 33282565 [TBL] [Abstract][Full Text] [Related]
3. Identification of genes and pathways associated with pancreatic ductal adenocarcinoma by bioinformatics analyses. Long J; Zhang Z; Liu Z; Xu Y; Ge C Oncol Lett; 2016 Feb; 11(2):1391-1397. PubMed ID: 26893748 [TBL] [Abstract][Full Text] [Related]
4. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis. Shang M; Zhang L; Chen X; Zheng S Discov Med; 2019 Sep; 28(153):159-172. PubMed ID: 31926587 [TBL] [Abstract][Full Text] [Related]
5. Identification of potential hub genes associated with the pathogenesis and prognosis of pancreatic duct adenocarcinoma using bioinformatics meta-analysis of multi-platform datasets. Ma Y; Pu Y; Peng L; Luo X; Xu J; Peng Y; Tang X Oncol Lett; 2019 Dec; 18(6):6741-6751. PubMed ID: 31807183 [TBL] [Abstract][Full Text] [Related]
6. Identification of key regulators of pancreatic ductal adenocarcinoma using bioinformatics analysis of microarray data. Li N; Zhao X; You S Medicine (Baltimore); 2019 Jan; 98(2):e14074. PubMed ID: 30633213 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma. Dong S; Huang F; Zhang H; Chen Q Biosci Rep; 2019 Feb; 39(2):. PubMed ID: 30765611 [TBL] [Abstract][Full Text] [Related]
9. Four potential microRNAs affect the progression of pancreatic ductal adenocarcinoma by targeting MET via the PI3K/AKT signaling pathway. Yao LC; Jiang XH; Yan SS; Wang W; Wu L; Zhai LL; Xiang F; Ji T; Ye L; Tang ZG Oncol Lett; 2021 Apr; 21(4):326. PubMed ID: 33692858 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel genes associated with a poor prognosis in pancreatic ductal adenocarcinoma via a bioinformatics analysis. Zhou J; Hui X; Mao Y; Fan L Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31311829 [TBL] [Abstract][Full Text] [Related]
11. Screening and validating the core biomarkers in patients with pancreatic ductal adenocarcinoma. Li Y; Zhu YY; Dai GP; Wu DJ; Gao ZZ; Zhang L; Fan YH Math Biosci Eng; 2019 Nov; 17(1):910-927. PubMed ID: 31731384 [TBL] [Abstract][Full Text] [Related]
12. Bioinformatics analysis reveals meaningful markers and outcome predictors in HBV-associated hepatocellular carcinoma. Zhang L; Makamure J; Zhao D; Liu Y; Guo X; Zheng C; Liang B Exp Ther Med; 2020 Jul; 20(1):427-435. PubMed ID: 32537007 [TBL] [Abstract][Full Text] [Related]
13. Screening Hub Genes as Prognostic Biomarkers of Hepatocellular Carcinoma by Bioinformatics Analysis. Zhou Z; Li Y; Hao H; Wang Y; Zhou Z; Wang Z; Chu X Cell Transplant; 2019 Dec; 28(1_suppl):76S-86S. PubMed ID: 31822116 [TBL] [Abstract][Full Text] [Related]
14. Identification of hub genes involved in the occurrence and development of hepatocellular carcinoma via bioinformatics analysis. Mi N; Cao J; Zhang J; Fu W; Huang C; Gao L; Yue P; Bai B; Lin Y; Meng W; Li X Oncol Lett; 2020 Aug; 20(2):1695-1708. PubMed ID: 32724412 [TBL] [Abstract][Full Text] [Related]
15. Identification of key pathways and genes changes in pancreatic cancer cells (BXPC-3) after cross-talk with primary pancreatic stellate cells using bioinformatics analysis. Tang D; Wu Q; Yuan Z; Xu J; Zhang H; Jin Z; Zhang Q; Xu M; Wang Z; Dai Z; Fang H; Li Z; Lin C; Shi C; Xu M; Sun X; Wang D Neoplasma; 2019 Sep; 66(5):681-693. PubMed ID: 31169017 [TBL] [Abstract][Full Text] [Related]
16. Identification of key genes and microRNAs involved in kidney Wilms tumor by integrated bioinformatics analysis. Zhang L; Gao X; Zhou X; Qin Z; Wang Y; Li R; Tang M; Wang W; Zhang W Exp Ther Med; 2019 Oct; 18(4):2554-2564. PubMed ID: 31555364 [TBL] [Abstract][Full Text] [Related]
17. Multi-level integrative analysis of the roles of lncRNAs and differential mRNAs in the progression of chronic pancreatitis to pancreatic ductal adenocarcinoma. Zhao Z; Luo Q; Liu Y; Jiang K; Zhou L; Dai R; Wang H BMC Genomics; 2023 Mar; 24(1):101. PubMed ID: 36879212 [TBL] [Abstract][Full Text] [Related]
18. Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach. Wang Y; Li Y Asian Pac J Cancer Prev; 2015; 16(6):2561-7. PubMed ID: 25824797 [TBL] [Abstract][Full Text] [Related]
19. Identification of key pathways and candidate genes in pancreatic ductal adenocarcinoma using bioinformatics analysis. He Y; Liu Y; Gong J; Liu C; Zhang H; Wu H Oncol Lett; 2019 Apr; 17(4):3751-3764. PubMed ID: 30881497 [TBL] [Abstract][Full Text] [Related]
20. Bioinformatic Analysis Suggests That Three Hub Genes May Be a Vital Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma. Chang X; Yang MF; Fan W; Wang LS; Yao J; Li ZS; Li DF J Comput Biol; 2020 Nov; 27(11):1595-1609. PubMed ID: 32216644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]