These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32218981)

  • 21. Observation of surface precipitation of arsenate on ferrihydrite.
    Jia Y; Xu L; Fang Z; Demopoulos GP
    Environ Sci Technol; 2006 May; 40(10):3248-53. PubMed ID: 16749689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate.
    Majzlan J
    Environ Sci Technol; 2011 Jun; 45(11):4726-32. PubMed ID: 21557572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite.
    Qi X; Li Y; Wei L; Hao F; Zhu X; Wei Y; Li K; Wang H
    RSC Adv; 2019 Dec; 10(1):29-42. PubMed ID: 35492560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Ito M; Hiroyoshi N
    Chemosphere; 2019 Oct; 233():946-953. PubMed ID: 31340422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of reaction temperature on the size and morphology of scorodite synthesized using ultrasound irradiation.
    Kitamura Y; Okawa H; Kato T; Sugawara K
    Ultrason Sonochem; 2017 Mar; 35(Pt B):598-604. PubMed ID: 27397021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of As speciation with depth in a soil profile with a geothermal As origin.
    Yang PT; Wu WJ; Hashimoto Y; Huang JH; Huang ST; Hseu ZY; Wang SL
    Chemosphere; 2020 Feb; 241():124956. PubMed ID: 31605996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fate of co-existent cadmium and arsenic during Fe(II)-induced transformation of As(V)/Cd(II)-bearing ferrihydrite.
    Zhao X; Yuan Z; Wang S; Zhang G; Qu S; Wang Y; Liu S; Pan Y; Lin J; Jia Y
    Chemosphere; 2022 Aug; 301():134665. PubMed ID: 35452640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study.
    Cui J; Jing C; Che D; Zhang J; Duan S
    J Environ Sci (China); 2015 Jun; 32():42-53. PubMed ID: 26040730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability of Fe-As composites formed with As(V) and aged ferrihydrite.
    Yang Z; Bai L; Su S; Wang Y; Wu C; Zeng X; Sun B
    J Environ Sci (China); 2021 Feb; 100():43-50. PubMed ID: 33279052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of Arsenic Partitioning During Sulfidation of As-Sorbed Ferrihydrite Nanoparticles.
    Kumar N; Noël V; Besold J; Planer-Friedrich B; Boye K; Fendorf S; Brown GE
    ACS Earth Space Chem; 2022 Jul; 6(7):1666-1673. PubMed ID: 35903782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs nitrate), added gypsum, and pH alteration.
    Jia Y; Demopoulos GP
    Environ Sci Technol; 2005 Dec; 39(24):9523-7. PubMed ID: 16475331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New clues to the local atomic structure of short-range ordered ferric arsenate from extended X-ray absorption fine structure spectroscopy.
    Mikutta C; Mandaliev PN; Kretzschmar R
    Environ Sci Technol; 2013 Apr; 47(7):3122-31. PubMed ID: 23413827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.
    Wang Y; Lv C; Xiao L; Fu G; Liu Y; Ye S; Chen Y
    Environ Technol; 2019 May; 40(13):1714-1720. PubMed ID: 29345188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.
    González-Contreras P; Weijma J; Buisman CJ
    Water Res; 2012 Nov; 46(18):5883-92. PubMed ID: 22960037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-ray Photoelectron Spectroscopic and Raman microscopic investigation of the variscite group minerals: Variscite, strengite, scorodite and mansfieldite.
    Kloprogge JT; Wood BJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():163-172. PubMed ID: 28570987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong.
    Cui JL; Zhao YP; Li JS; Beiyuan JZ; Tsang DCW; Poon CS; Chan TS; Wang WX; Li XD
    Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic speciation transformation in soils with high geological background: New insights from the governing role of Fe.
    Gao M; Su Y; Gao J; Zhong X; Li H; Wang H; Lü C; He J
    Chemosphere; 2022 Sep; 302():134860. PubMed ID: 35551944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The long-term stability of Fe
    Zhang D; Wang S; Gomez MA; Wang Y; Jia Y
    J Hazard Mater; 2019 Jul; 374():276-286. PubMed ID: 31009892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into mineralizer modified and tailored scorodite crystal characteristics and leachability for arsenic-rich smelter wastewater stabilization.
    Sun Y; Yao Q; Zhang X; Yang H; Li N; Zhang Z; Hao Z
    RSC Adv; 2018 May; 8(35):19560-19569. PubMed ID: 35540995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.