BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32219238)

  • 1. Porous, n-p type ultra-long, ZnO@Bi
    Ramakrishnan V; Nair KG; Dhakshinamoorthy J; Ravi KR; Pullithadathil B
    Phys Chem Chem Phys; 2020 Apr; 22(14):7524-7536. PubMed ID: 32219238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the performance of NO
    Vishnuraj R; Karuppanan KK; Aleem M; Pullithadathil B
    Nanoscale Adv; 2020 Oct; 2(10):4785-4797. PubMed ID: 36132937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Operating-Temperature NO
    Sun K; Zhan G; Chen H; Lin S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites.
    Zou CW; Wang J; Xie W
    J Colloid Interface Sci; 2016 Sep; 478():22-8. PubMed ID: 27280536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO
    Xia Y; Wang J; Xu JL; Li X; Xie D; Xiang L; Komarneni S
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35454-35463. PubMed ID: 27966870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Oxidizing Gas Sensing and Dominant Sensing Mechanism of n-CaO-Decorated n-ZnO Nanorod Sensors.
    Sun GJ; Lee JK; Choi S; Lee WI; Kim HW; Lee C
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9975-9985. PubMed ID: 28244727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method.
    Zhang D; Dong G; Cao Y; Zhang Y
    J Colloid Interface Sci; 2018 Oct; 528():184-191. PubMed ID: 29852348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, Structure, and Ethanol Gas Sensing Properties of In2O3 Nanorods Decorated with Bi2O3 Nanoparticles.
    Park S; Kim S; Sun GJ; Lee C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8138-46. PubMed ID: 25844852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive NO
    Liu W; Gu D; Li X
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29029-29040. PubMed ID: 31313913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.
    Ke NH; Trinh TT; Mung NT; Loan PTK; Tuan DA; Truong NH; Tran CV; Hung VT
    J Nanosci Nanotechnol; 2017 Jan; 17(1):634-39. PubMed ID: 29630318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability.
    Ghule BG; Shinde NM; Raut SD; Shaikh SF; Al-Enizi AM; Kim KH; Mane RS
    J Colloid Interface Sci; 2021 May; 589():401-410. PubMed ID: 33482537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Switchable Dual-Conductive Channels and Related Nitric Oxide Gas-Sensing Properties in the N-rGO/ZnO Heterogeneous Structure.
    Qiu J; Hu X; Min X; Quan W; Tian R; Ji P; Zheng H; Qin W; Wang H; Pan T; Cheng S; Chen X; Zhang W; Wang X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19755-19767. PubMed ID: 32242657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature.
    Liao J; Li Z; Wang G; Chen C; Lv S; Li M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4835-41. PubMed ID: 26804157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction.
    Ke NH; Trinh le TT; Phung PK; Loan PT; Tuan DA; Truong NH; Tran CV; Hung le VT
    Springerplus; 2016; 5(1):710. PubMed ID: 27375979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An organometallic chemistry-assisted strategy for modification of zinc oxide nanoparticles by tin oxide nanoparticles: Formation of n-n heterojunction and boosting NO
    Liu S; Zhang Y; Gao S; Fei T; Zhang Y; Zheng X; Zhang T
    J Colloid Interface Sci; 2020 May; 567():328-338. PubMed ID: 32065907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of ZnO nanorods for gas sensing applications using hydrothermal method.
    Nguyen CP; La PP; Trinh TT; Le TA; Bong S; Jang K; Ahn S; Yi J
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6261-5. PubMed ID: 25936100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.
    Ju DX; Xu HY; Qiu ZW; Zhang ZC; Xu Q; Zhang J; Wang JQ; Cao BQ
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19163-71. PubMed ID: 26280916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior NO
    Li Z; Zhang Y; Zhang H; Jiang Y; Yi J
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37489-37498. PubMed ID: 32644774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.
    Minh Triet N; Thai Duy L; Hwang BU; Hanif A; Siddiqui S; Park KH; Cho CY; Lee NE
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30722-30732. PubMed ID: 28825301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst.
    Lin L; Yang Y; Men L; Wang X; He D; Chai Y; Zhao B; Ghoshroy S; Tang Q
    Nanoscale; 2013 Jan; 5(2):588-93. PubMed ID: 23203318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.