BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32219437)

  • 21. LKB1 pro-oncogenic activity triggers cell survival in circulating tumor cells.
    Trapp EK; Majunke L; Zill B; Sommer H; Andergassen U; Koch J; Harbeck N; Mahner S; Friedl TWP; Janni W; Rack B; Alunni-Fabbroni M
    Mol Oncol; 2017 Nov; 11(11):1508-1526. PubMed ID: 28700115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AMPK-Independent LKB1 Activity Is Required for Efficient Epithelial Ovarian Cancer Metastasis.
    Buensuceso A; Ramos-Valdes Y; DiMattia GE; Shepherd TG
    Mol Cancer Res; 2020 Mar; 18(3):488-500. PubMed ID: 31744879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence.
    Manda KR; Tripathi P; Hsi AC; Ning J; Ruzinova MB; Liapis H; Bailey M; Zhang H; Maher CA; Humphrey PA; Andriole GL; Ding L; You Z; Chen F
    Oncogene; 2016 Jun; 35(25):3282-92. PubMed ID: 26477312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model.
    Fan X; Bjerke GA; Riemondy K; Wang L; Yi R
    Mol Carcinog; 2019 Dec; 58(12):2241-2253. PubMed ID: 31512783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model.
    Wang Z; Xu D; Ding HF; Kim J; Zhang J; Hai T; Yan C
    Oncogene; 2015 Sep; 34(38):4975-84. PubMed ID: 25531328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis.
    Zhong C; Saribekyan G; Liao CP; Cohen MB; Roy-Burman P
    Cancer Res; 2006 Feb; 66(4):2188-94. PubMed ID: 16489020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.
    Tan M; Xu J; Siddiqui J; Feng F; Sun Y
    Mol Cancer; 2016 Dec; 15(1):81. PubMed ID: 27955654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor suppression by LKB1: SIK-ness prevents metastasis.
    Shaw RJ
    Sci Signal; 2009 Sep; 2(86):pe55. PubMed ID: 19724060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of LKB1 and p53 synergizes to alter fallopian tube epithelial phenotype and high-grade serous tumorigenesis.
    George SH; Milea A; Sowamber R; Chehade R; Tone A; Shaw PA
    Oncogene; 2016 Jan; 35(1):59-68. PubMed ID: 25798842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. No Tumor Suppressor Role for
    Koseoglu H; Celebi A; Galamiyeva G; Dalay N; Ozkardes H; Buyru N
    DNA Cell Biol; 2021 Sep; 40(9):1222-1229. PubMed ID: 34370601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Expressions and Significance of PTEN and LKB1 in Non-small Cell Lung Cancer].
    Li Y; Li Y; Yang H; Wang P
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2016 Jul; 47(4):507-511. PubMed ID: 28591951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of PTEN Accelerates NKX3.1 Degradation to Promote Prostate Cancer Progression.
    Bowen C; Ostrowski MC; Leone G; Gelmann EP
    Cancer Res; 2019 Aug; 79(16):4124-4134. PubMed ID: 31213464
    [No Abstract]   [Full Text] [Related]  

  • 33. Pten dose dictates cancer progression in the prostate.
    Trotman LC; Niki M; Dotan ZA; Koutcher JA; Di Cristofano A; Xiao A; Khoo AS; Roy-Burman P; Greenberg NM; Van Dyke T; Cordon-Cardo C; Pandolfi PP
    PLoS Biol; 2003 Dec; 1(3):E59. PubMed ID: 14691534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The AMPK-Related Kinases SIK1 and SIK3 Mediate Key Tumor-Suppressive Effects of LKB1 in NSCLC.
    Hollstein PE; Eichner LJ; Brun SN; Kamireddy A; Svensson RU; Vera LI; Ross DS; Rymoff TJ; Hutchins A; Galvez HM; Williams AE; Shokhirev MN; Screaton RA; Berdeaux R; Shaw RJ
    Cancer Discov; 2019 Nov; 9(11):1606-1627. PubMed ID: 31350328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of LKB1 and PTEN tumor suppressor genes during mouse embryonic development.
    Luukko K; Ylikorkala A; Tiainen M; Mäkelä TP
    Mech Dev; 1999 May; 83(1-2):187-90. PubMed ID: 10381580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of liquid chromatography mass spectrometry analyses to identify LKB1-APC interaction in modulating Wnt/β-catenin pathway of lung cancer cells.
    Jian SF; Hsiao CC; Chen SY; Weng CC; Kuo TL; Wu DC; Hung WC; Cheng KH
    Mol Cancer Res; 2014 Apr; 12(4):622-35. PubMed ID: 24448687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice.
    Gao Y; Lin P; Lydon JP; Li Q
    J Pathol; 2017 Sep; 243(1):89-99. PubMed ID: 28657664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice.
    Hsieh MJ; Weng CC; Lin YC; Wu CC; Chen LT; Cheng KH
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor suppressor LKB1 inhibits activation of signal transducer and activator of transcription 3 (STAT3) by thyroid oncogenic tyrosine kinase rearranged in transformation (RET)/papillary thyroid carcinoma (PTC).
    Kim DW; Chung HK; Park KC; Hwang JH; Jo YS; Chung J; Kalvakolanu DV; Resta N; Shong M
    Mol Endocrinol; 2007 Dec; 21(12):3039-49. PubMed ID: 17761947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.