These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32219602)
1. A universal chromosome identification system for maize and wild Zea species. Braz GT; do Vale Martins L; Zhang T; Albert PS; Birchler JA; Jiang J Chromosome Res; 2020 Jun; 28(2):183-194. PubMed ID: 32219602 [TBL] [Abstract][Full Text] [Related]
2. Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species. Ellneskog-Staam P; Henry Loaisiga C; Merker A Hereditas; 2007 Jul; 144(3):96-101. PubMed ID: 17663701 [TBL] [Abstract][Full Text] [Related]
3. Karyotype of Zea luxurians and Z. mays subsp. mays using FISH/DAPI, and analysis of meiotic behavior of hybrids. González GE; Poggio L Genome; 2011 Jan; 54(1):26-32. PubMed ID: 21217803 [TBL] [Abstract][Full Text] [Related]
4. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea. González GE; Poggio L Genome; 2015 Oct; 58(10):433-9. PubMed ID: 26506040 [TBL] [Abstract][Full Text] [Related]
5. Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Lamb JC; Danilova T; Bauer MJ; Meyer JM; Holland JJ; Jensen MD; Birchler JA Genetics; 2007 Mar; 175(3):1047-58. PubMed ID: 17237520 [TBL] [Abstract][Full Text] [Related]
6. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Mano Y; Omori F Ann Bot; 2013 Oct; 112(6):1125-39. PubMed ID: 23877074 [TBL] [Abstract][Full Text] [Related]
7. A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Zhu M; Du P; Zhuang L; Chu C; Zhao H; Qi Z Genome; 2017 Aug; 60(8):657-664. PubMed ID: 28472606 [TBL] [Abstract][Full Text] [Related]
8. Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Lamb JC; Birchler JA Genetics; 2006 Jun; 173(2):1007-21. PubMed ID: 16582446 [TBL] [Abstract][Full Text] [Related]
9. Genomic affinities between maize and Zea perennis using classical and molecular cytogenetic methods (GISH-FISH). González G; Comas C; Confalonieri V; Naranjo CA; Poggio L Chromosome Res; 2006; 14(6):629-35. PubMed ID: 16964569 [TBL] [Abstract][Full Text] [Related]
10. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Amarillo FI; Bass HW Genetics; 2007 Nov; 177(3):1509-26. PubMed ID: 17947405 [TBL] [Abstract][Full Text] [Related]
11. Distinct chromosomal distributions of highly repetitive sequences in maize. Lamb JC; Meyer JM; Corcoran B; Kato A; Han F; Birchler JA Chromosome Res; 2007; 15(1):33-49. PubMed ID: 17295125 [TBL] [Abstract][Full Text] [Related]
12. GISHGenomic in situ hybridization reveals cryptic genetic differences between maize and its putative wild progenitor Zea mays subsp. parviglumis. Gonzalez G; Confalonieri V; Comas C; Naranjo CA; Poggio L Genome; 2004 Oct; 47(5):947-53. PubMed ID: 15499408 [TBL] [Abstract][Full Text] [Related]
13. RAPD and internal transcribed spacer sequence analyses reveal Zea nicaraguensis as a section Luxuriantes species close to Zea luxurians. Wang P; Lu Y; Zheng M; Rong T; Tang Q PLoS One; 2011 Apr; 6(4):e16728. PubMed ID: 21525982 [TBL] [Abstract][Full Text] [Related]
14. [Detection of maize centromeric repeats in the relatives of maize using fluorescence in situ hybridization]. She CW; Jiang XH; Song YC; Liu W Yi Chuan; 2010 Mar; 32(3):264-70. PubMed ID: 20233704 [TBL] [Abstract][Full Text] [Related]
16. Oligo-FISH barcode in beans: a new chromosome identification system. de Oliveira Bustamante F; do Nascimento TH; Montenegro C; Dias S; do Vale Martins L; Braz GT; Benko-Iseppon AM; Jiang J; Pedrosa-Harand A; Brasileiro-Vidal AC Theor Appl Genet; 2021 Nov; 134(11):3675-3686. PubMed ID: 34368889 [TBL] [Abstract][Full Text] [Related]
17. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize. Realini MF; Poggio L; Cámara Hernández J; González GE PLoS One; 2018; 13(6):e0198398. PubMed ID: 29879173 [TBL] [Abstract][Full Text] [Related]
18. A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Koumbaris GL; Bass HW Plant J; 2003 Sep; 35(5):647-59. PubMed ID: 12940957 [TBL] [Abstract][Full Text] [Related]
19. [The production and multi-color genomic in situ hybridization identification of maize-Z. perennis substituted material]. Tang QL; Li WC; Song YC; Rong TZ; Pan GT; Huang YB; Cao MJ Yi Chuan Xue Bao; 2004 Apr; 31(4):340-4. PubMed ID: 15487500 [TBL] [Abstract][Full Text] [Related]
20. Diversity of chromosomal karyotypes in maize and its relatives. Albert PS; Gao Z; Danilova TV; Birchler JA Cytogenet Genome Res; 2010 Jul; 129(1-3):6-16. PubMed ID: 20551613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]