BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 32219602)

  • 1. A universal chromosome identification system for maize and wild Zea species.
    Braz GT; do Vale Martins L; Zhang T; Albert PS; Birchler JA; Jiang J
    Chromosome Res; 2020 Jun; 28(2):183-194. PubMed ID: 32219602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).
    Mano Y; Omori F
    Ann Bot; 2013 Oct; 112(6):1125-39. PubMed ID: 23877074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.
    Realini MF; Poggio L; Cámara Hernández J; González GE
    PLoS One; 2018; 13(6):e0198398. PubMed ID: 29879173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updating the maize karyotype by chromosome DNA sizing.
    Silva JC; Carvalho CR; Clarindo WR
    PLoS One; 2018; 13(1):e0190428. PubMed ID: 29293613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9.
    Wang CJ; Harper L; Cande WZ
    Plant Cell; 2006 Mar; 18(3):529-44. PubMed ID: 16461583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive sequences and structural chromosome alterations promote intraspecific variations in Zea mays L. karyotype.
    Silva JC; Soares FAF; Sattler MC; Clarindo WR
    Sci Rep; 2020 Jun; 10(1):8866. PubMed ID: 32483238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NLRomes of Zea mays NAM founder lines and Zea luxurians display presence-absence variation, integrated domain diversity, and mobility.
    Thatcher S; Jung M; Panangipalli G; Fengler K; Sanyal A; Li B; Llaca V; Habben J
    Mol Plant Pathol; 2023 Jul; 24(7):742-757. PubMed ID: 36929631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special issue: Genetics of maize-microbe interactions.
    Balint-Kurti P; Wang GF
    Mol Plant Pathol; 2023 Jul; 24(7):671-674. PubMed ID: 37209308
    [No Abstract]   [Full Text] [Related]  

  • 9. Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding.
    Hu H; Scheben A; Wang J; Li F; Li C; Edwards D; Zhao J
    Plant Biotechnol J; 2024 Mar; 22(3):544-554. PubMed ID: 37961986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants.
    Harun A; Liu H; Song S; Asghar S; Wen X; Fang Z; Chen C
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of karyotypic evolution in Saccharum spontaneum species by comparative oligo-FISH mapping.
    Meng Z; Wang F; Xie Q; Li R; Shen H; Li H
    BMC Plant Biol; 2022 Dec; 22(1):599. PubMed ID: 36539690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Chromosome Identification in the Prunus Subgenus
    Wang L; Feng Y; Wang Y; Zhang J; Chen Q; Liu Z; Liu C; He W; Wang H; Yang S; Zhang Y; Luo Y; Tang H; Wang X
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chromosome-level, haplotype-phased Vanilla planifolia genome highlights the challenge of partial endoreplication for accurate whole-genome assembly.
    Piet Q; Droc G; Marande W; Sarah G; Bocs S; Klopp C; Bourge M; Siljak-Yakovlev S; Bouchez O; Lopez-Roques C; Lepers-Andrzejewski S; Bourgois L; Zucca J; Dron M; Besse P; Grisoni M; Jourda C; Charron C
    Plant Commun; 2022 Sep; 3(5):100330. PubMed ID: 35617961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the Molecular Cytogenetics of Bananas, Family Musaceae.
    Šimoníková D; Čížková J; Zoulová V; Christelová P; Hřibová E
    Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Karyotype Differentiation in Cultivated Chickpea Revealed by Oligopainting Fluorescence
    Doležalová A; Sládeková L; Šimoníková D; Holušová K; Karafiátová M; Varshney RK; Doležel J; Hřibová E
    Front Plant Sci; 2021; 12():791303. PubMed ID: 35145533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome identification in oil palm (Elaeis guineensis) using in situ hybridization with massive pools of single copy oligonucleotides and transferability across Arecaceae species.
    Zaki NM; Schwarzacher T; Singh R; Madon M; Wischmeyer C; Hanim Mohd Nor N; Zulkifli MA; Heslop-Harrison JSP
    Chromosome Res; 2021 Dec; 29(3-4):373-390. PubMed ID: 34657216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal Characterization of
    Yu F; Chai J; Li X; Yu Z; Yang R; Ding X; Wang Q; Wu J; Yang X; Deng Z
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Copy Oligonucleotide Fluorescence In Situ Hybridization Probe Design Platforms: Development, Application and Evaluation.
    Liu G; Zhang T
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization.
    Zhang T; Liu G; Zhao H; Braz GT; Jiang J
    Plant Biotechnol J; 2021 Oct; 19(10):1967-1978. PubMed ID: 33960617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic regulation of root traits for soil flooding tolerance in genus
    Mano Y; Nakazono M
    Breed Sci; 2021 Feb; 71(1):30-39. PubMed ID: 33762874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.