BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32219745)

  • 21. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.
    Hindriksen S; Bramer AJ; Truong MA; Vromans MJM; Post JB; Verlaan-Klink I; Snippert HJ; Lens SMA; Hadders MA
    PLoS One; 2017; 12(6):e0179514. PubMed ID: 28640891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system.
    Wandera KG; Collins SP; Wimmer F; Marshall R; Noireaux V; Beisel CL
    Methods; 2020 Feb; 172():42-50. PubMed ID: 31121300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system.
    Sugano SS; Suzuki H; Shimokita E; Chiba H; Noji S; Osakabe Y; Osakabe K
    Sci Rep; 2017 Apr; 7(1):1260. PubMed ID: 28455526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precision-engineered reporter cell lines reveal ABCG2 regulation in live lung cancer cells.
    Kovacsics D; Brózik A; Tihanyi B; Matula Z; Borsy A; Mészáros N; Szabó E; Németh E; Fóthi Á; Zámbó B; Szüts D; Várady G; Orbán TI; Apáti Á; Sarkadi B
    Biochem Pharmacol; 2020 May; 175():113865. PubMed ID: 32142727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 26. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasive imaging of transcriptionally restricted transgene expression following intratumoral injection of an adenovirus in which the COX-2 promoter drives a reporter gene.
    Liang Q; Yamamoto M; Curiel DT; Herschman HR
    Mol Imaging Biol; 2004; 6(6):395-404. PubMed ID: 15564150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion Tract Analysis of Homology-Directed Genome Editing Using Oligonucleotide Donors.
    Kan Y; Hendrickson EA
    Methods Mol Biol; 2019; 1999():131-144. PubMed ID: 31127573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Insulator Scanning of CpG Islands to Identify Regulatory Regions of Promoters Using CRISPR.
    Grob A; Marbiah M; Isalan M
    Methods Mol Biol; 2018; 1766():285-301. PubMed ID: 29605859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System.
    Aksoy YA; Yang B; Chen W; Hung T; Kuchel RP; Zammit NW; Grey ST; Goldys EM; Deng W
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52433-52444. PubMed ID: 33174413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice.
    Li C; Li W; Zhou Z; Chen H; Xie C; Lin Y
    Plant Biotechnol J; 2020 Feb; 18(2):313-315. PubMed ID: 31344313
    [No Abstract]   [Full Text] [Related]  

  • 32. Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes.
    Wang Q; Xie F; Tong Y; Habisch R; Yang B; Zhang L; Müller R; Fu C
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):225-239. PubMed ID: 31788711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multidimensional chemical control of CRISPR-Cas9.
    Maji B; Moore CL; Zetsche B; Volz SE; Zhang F; Shoulders MD; Choudhary A
    Nat Chem Biol; 2017 Jan; 13(1):9-11. PubMed ID: 27820801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CRISPR-Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis.
    Zhang L; Zhang H; Liu Y; Zhou J; Shen W; Liu L; Li Q; Chen X
    Biotechnol Bioeng; 2020 Feb; 117(2):531-542. PubMed ID: 31654413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology.
    Xu X; Qi LS
    J Mol Biol; 2019 Jan; 431(1):34-47. PubMed ID: 29958882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter.
    Hasson SA; Fogel AI; Wang C; MacArthur R; Guha R; Heman-Ackah S; Martin S; Youle RJ; Inglese J
    ACS Chem Biol; 2015 May; 10(5):1188-97. PubMed ID: 25689131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.