BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32219854)

  • 1. A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids.
    Xue P; Si T; Mishra S; Zhang L; Choe K; Sweedler JV; Zhao H
    Biotechnol Bioeng; 2020 Jul; 117(7):2131-2138. PubMed ID: 32219854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidimensional Metabolic Engineering for Constructing Efficient Cell Factories.
    Liu J; Hou J
    Trends Biotechnol; 2020 May; 38(5):468-469. PubMed ID: 32302578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty Acids in
    Hussain SA; Garcia A; Khan MAK; Nosheen S; Zhang Y; Koffas MAG; Garre V; Lee SC; Song Y
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32764225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast.
    Hu Y; Zhu Z; Gradischnig D; Winkler M; Nielsen J; Siewers V
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22974-22983. PubMed ID: 32873649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Fatty Acid Synthases (FASs) to Boost the Production of Medium-Chain Fatty Acids (MCFAs) in
    Hussain SA; Hameed A; Khan MAK; Zhang Y; Zhang H; Garre V; Song Y
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production.
    Sarria S; Bartholow TG; Verga A; Burkart MD; Peralta-Yahya P
    ACS Synth Biol; 2018 May; 7(5):1179-1187. PubMed ID: 29722970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production.
    Gajewski J; Pavlovic R; Fischer M; Boles E; Grininger M
    Nat Commun; 2017 Mar; 8():14650. PubMed ID: 28281527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.
    Runguphan W; Keasling JD
    Metab Eng; 2014 Jan; 21():103-13. PubMed ID: 23899824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles.
    Fernandez-Moya R; Leber C; Cardenas J; Da Silva NA
    Biotechnol Bioeng; 2015 Dec; 112(12):2618-23. PubMed ID: 26084339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion.
    Ferreira R; Teixeira PG; Siewers V; Nielsen J
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1262-1267. PubMed ID: 29358378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast.
    Zhu Z; Zhou YJ; Kang MK; Krivoruchko A; Buijs NA; Nielsen J
    Metab Eng; 2017 Nov; 44():81-88. PubMed ID: 28939277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.
    Teixeira PG; Ferreira R; Zhou YJ; Siewers V; Nielsen J
    Microb Cell Fact; 2017 Mar; 16(1):45. PubMed ID: 28298234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.
    Yu T; Zhou YJ; Wenning L; Liu Q; Krivoruchko A; Siewers V; Nielsen J; David F
    Nat Commun; 2017 May; 8():15587. PubMed ID: 28548095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. macroMS: Image-Guided Analysis of Random Objects by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.
    Choe K; Xue P; Zhao H; Sweedler JV
    J Am Soc Mass Spectrom; 2021 May; 32(5):1180-1188. PubMed ID: 33822609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of Microbial Colonies for High-Throughput Engineering of Multistep Enzymatic Reactions via Optically Guided Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.
    Si T; Li B; Comi TJ; Wu Y; Hu P; Wu Y; Min Y; Mitchell DA; Zhao H; Sweedler JV
    J Am Chem Soc; 2017 Sep; 139(36):12466-12473. PubMed ID: 28792758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of strategies to narrow the product chain-length distribution of microbially synthesized free fatty acids.
    Jindra MA; Choe K; Chowdhury R; Kong R; Ghaffari S; Sweedler JV; Pfleger BF
    Metab Eng; 2023 May; 77():21-31. PubMed ID: 36863604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.
    Chen L; Zhang J; Lee J; Chen WN
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6739-50. PubMed ID: 24769906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-Colony Screening of Biosynthetic Libraries by Rapid Laser-Enabled Mass Spectrometry.
    Gowers GF; Cameron SJS; Perdones-Montero A; Bell D; Chee SM; Kern M; Tew D; Ellis T; Takáts Z
    ACS Synth Biol; 2019 Nov; 8(11):2566-2575. PubMed ID: 31622554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.