BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32219868)

  • 1. ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy.
    Caporali L; Magri S; Legati A; Del Dotto V; Tagliavini F; Balistreri F; Nasca A; La Morgia C; Carbonelli M; Valentino ML; Lamantea E; Baratta S; Schöls L; Schüle R; Barboni P; Cascavilla ML; Maresca A; Capristo M; Ardissone A; Pareyson D; Cammarata G; Melzi L; Zeviani M; Peverelli L; Lamperti C; Marzoli SB; Fang M; Synofzik M; Ghezzi D; Carelli V; Taroni F
    Ann Neurol; 2020 Jul; 88(1):18-32. PubMed ID: 32219868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation.
    Magri S; Fracasso V; Plumari M; Alfei E; Ghezzi D; Gellera C; Rusmini P; Poletti A; Di Bella D; Elia AE; Pantaleoni C; Taroni F
    Hum Mutat; 2018 Dec; 39(12):2060-2071. PubMed ID: 30252181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel AFG3L2 mutation close to AAA domain leads to aberrant OMA1 and OPA1 processing in a family with optic atrophy.
    Baderna V; Schultz J; Kearns LS; Fahey M; Thompson BA; Ruddle JB; Huq A; Maltecca F
    Acta Neuropathol Commun; 2020 Jun; 8(1):93. PubMed ID: 32600459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFG3L2 and ACO2-Linked Dominant Optic Atrophy: Genotype-Phenotype Characterization Compared to OPA1 Patients.
    Amore G; Romagnoli M; Carbonelli M; Cascavilla ML; De Negri AM; Carta A; Parisi V; Di Renzo A; Schiavi C; Lenzetti C; Zenesini C; Ormanbekova D; Palombo F; Fiorini C; Caporali L; Carelli V; Barboni P; La Morgia C
    Am J Ophthalmol; 2024 Jun; 262():114-124. PubMed ID: 38278202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies.
    Yu-Wai-Man P; Shankar SP; Biousse V; Miller NR; Bean LJ; Coffee B; Hegde M; Newman NJ
    Ophthalmology; 2011 Mar; 118(3):558-63. PubMed ID: 21036400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation.
    Tulli S; Del Bondio A; Baderna V; Mazza D; Codazzi F; Pierson TM; Ambrosi A; Nolte D; Goizet C; Toro C; Baets J; Deconinck T; DeJonghe P; Mandich P; Casari G; Maltecca F
    J Med Genet; 2019 Aug; 56(8):499-511. PubMed ID: 30910913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1.
    Lee J; Jung SC; Hong YB; Yoo JH; Koo H; Lee JH; Hong HD; Kim SB; Chung KW; Choi BO
    Mol Med Rep; 2016 Jul; 14(1):33-40. PubMed ID: 27150940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with OPA1 mutations.
    Nasca A; Rizza T; Doimo M; Legati A; Ciolfi A; Diodato D; Calderan C; Carrara G; Lamantea E; Aiello C; Di Nottia M; Niceta M; Lamperti C; Ardissone A; Bianchi-Marzoli S; Iarossi G; Bertini E; Moroni I; Tartaglia M; Salviati L; Carrozzo R; Ghezzi D
    Orphanet J Rare Dis; 2017 May; 12(1):89. PubMed ID: 28494813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5.
    Franchino CA; Brughera M; Baderna V; De Ritis D; Rocco A; Seneca S; Regal L; Podini P; D'Antonio M; Toro C; Quattrini A; Scalais E; Maltecca F
    Brain; 2024 Mar; 147(3):1043-1056. PubMed ID: 37804316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation.
    Calandra CR; Buda G; Vishnopolska SA; Oliveri J; Olivieri FA; Pérez Millán MI; Biagioli G; Miquelini LA; Pellene AL; Marti MA
    Parkinsonism Relat Disord; 2020 Apr; 73():52-54. PubMed ID: 32248051
    [No Abstract]   [Full Text] [Related]  

  • 11. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.
    Pierson TM; Adams D; Bonn F; Martinelli P; Cherukuri PF; Teer JK; Hansen NF; Cruz P; Mullikin For The Nisc Comparative Sequencing Program JC; Blakesley RW; Golas G; Kwan J; Sandler A; Fuentes Fajardo K; Markello T; Tifft C; Blackstone C; Rugarli EI; Langer T; Gahl WA; Toro C
    PLoS Genet; 2011 Oct; 7(10):e1002325. PubMed ID: 22022284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity.
    Mancini C; Hoxha E; Iommarini L; Brussino A; Richter U; Montarolo F; Cagnoli C; Parolisi R; Gondor Morosini DI; Nicolò V; Maltecca F; Muratori L; Ronchi G; Geuna S; Arnaboldi F; Donetti E; Giorgio E; Cavalieri S; Di Gregorio E; Pozzi E; Ferrero M; Riberi E; Casari G; Altruda F; Turco E; Gasparre G; Battersby BJ; Porcelli AM; Ferrero E; Brusco A; Tempia F
    Neurobiol Dis; 2019 Apr; 124():14-28. PubMed ID: 30389403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the phenotype of AFG3L2 mutations: Late-onset autosomal recessive spinocerebellar ataxia.
    Chiang HL; Fuh JL; Tsai YS; Soong BW; Liao YC; Lee YC
    J Neurol Sci; 2021 Sep; 428():117600. PubMed ID: 34333379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinocerebellar Ataxia Type 28-Phenotypic and Molecular Characterization of a Family with Heterozygous and Compound-Heterozygous Mutations in AFG3L2.
    Tunc S; Dulovic-Mahlow M; Baumann H; Baaske MK; Jahn M; Junker J; Münchau A; Brüggemann N; Lohmann K
    Cerebellum; 2019 Aug; 18(4):817-822. PubMed ID: 31111429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations.
    Liao C; Ashley N; Diot A; Morten K; Phadwal K; Williams A; Fearnley I; Rosser L; Lowndes J; Fratter C; Ferguson DJ; Vay L; Quaghebeur G; Moroni I; Bianchi S; Lamperti C; Downes SM; Sitarz KS; Flannery PJ; Carver J; Dombi E; East D; Laura M; Reilly MM; Mortiboys H; Prevo R; Campanella M; Daniels MJ; Zeviani M; Yu-Wai-Man P; Simon AK; Votruba M; Poulton J
    Neurology; 2017 Jan; 88(2):131-142. PubMed ID: 27974645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biallelic Optic Atrophy 1 (
    Othman BA; Ong JE; Dumitrescu AV
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prevalence and natural history of dominant optic atrophy due to OPA1 mutations.
    Yu-Wai-Man P; Griffiths PG; Burke A; Sellar PW; Clarke MP; Gnanaraj L; Ah-Kine D; Hudson G; Czermin B; Taylor RW; Horvath R; Chinnery PF
    Ophthalmology; 2010 Aug; 117(8):1538-46, 1546.e1. PubMed ID: 20417570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation survey of the optic atrophy 1 gene in 193 Chinese families with suspected hereditary optic neuropathy.
    Chen Y; Jia X; Wang P; Xiao X; Li S; Guo X; Zhang Q
    Mol Vis; 2013; 19():292-302. PubMed ID: 23401657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pure and syndromic optic atrophy explained by deep intronic OPA1 mutations and an intralocus modifier.
    Bonifert T; Karle KN; Tonagel F; Batra M; Wilhelm C; Theurer Y; Schoenfeld C; Kluba T; Kamenisch Y; Carelli V; Wolf J; Gonzalez MA; Speziani F; Schüle R; Züchner S; Schöls L; Wissinger B; Synofzik M
    Brain; 2014 Aug; 137(Pt 8):2164-77. PubMed ID: 24970096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy.
    Charif M; Chevrollier A; Gueguen N; Bris C; Goudenège D; Desquiret-Dumas V; Leruez S; Colin E; Meunier A; Vignal C; Smirnov V; Defoort-Dhellemmes S; Drumare Bouvet I; Goizet C; Votruba M; Jurkute N; Yu-Wai-Man P; Tagliavini F; Caporali L; La Morgia C; Carelli V; Procaccio V; Zanlonghi X; Meunier I; Reynier P; Bonneau D; Amati-Bonneau P; Lenaers G
    Neurol Genet; 2020 Jun; 6(3):e428. PubMed ID: 32548275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.