These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32219970)

  • 1. Research progress of rumen hydrogen sulfide production in ruminants.
    Qian K; Xu J; Zu HC; Cong YY
    Anim Sci J; 2020; 91(1):e13349. PubMed ID: 32219970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.
    Newbold CJ; Ramos-Morales E
    Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production.
    Patra AK; Saxena J
    Nutr Res Rev; 2009 Dec; 22(2):204-19. PubMed ID: 20003589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants.
    Li QS; Wang R; Ma ZY; Zhang XM; Jiao JZ; Zhang ZG; Ungerfeld EM; Yi KL; Zhang BZ; Long L; Long Y; Tao Y; Huang T; Greening C; Tan ZL; Wang M
    ISME J; 2022 Nov; 16(11):2535-2546. PubMed ID: 35931768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D; Indugu N; Narayan K; Hennessy M
    J Dairy Sci; 2022 Oct; 105(10):8569-8585. PubMed ID: 35346473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial ecosystem and methanogenesis in ruminants.
    Morgavi DP; Forano E; Martin C; Newbold CJ
    Animal; 2010 Jul; 4(7):1024-36. PubMed ID: 22444607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.
    Wu H; Meng Q; Yu Z
    Bioresour Technol; 2015 Jun; 186():25-33. PubMed ID: 25797103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.
    Leahy SC; Kelly WJ; Altermann E; Ronimus RS; Yeoman CJ; Pacheco DM; Li D; Kong Z; McTavish S; Sang C; Lambie SC; Janssen PH; Dey D; Attwood GT
    PLoS One; 2010 Jan; 5(1):e8926. PubMed ID: 20126622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals.
    Tseten T; Sanjorjo RA; Kwon M; Kim SW
    J Microbiol Biotechnol; 2022 Mar; 32(3):269-277. PubMed ID: 35283433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.
    Guyader J; Eugène M; Nozière P; Morgavi DP; Doreau M; Martin C
    Animal; 2014 Nov; 8(11):1816-25. PubMed ID: 25075950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting methane production and mitigation in ruminants.
    Shibata M; Terada F
    Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
    Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V
    Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a conceptual model of possible benefits of condensed tannins for ruminant production.
    Tedeschi LO; Ramírez-Restrepo CA; Muir JP
    Animal; 2014 Jul; 8(7):1095-105. PubMed ID: 24784919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7.
    Kushkevych I; Dordević D; Vítězová M
    Arch Microbiol; 2019 Apr; 201(3):389-397. PubMed ID: 30707247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of molybdate on sulfide production from methionine and sulfate by ruminal microorganisms of sheep.
    Huisingh J; Milholland DC; Matrone G
    J Nutr; 1975 Sep; 105(9):1199-205. PubMed ID: 1159535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of sulfate reduction to sulfide by 9,10-anthraquinone in in vitro ruminal fermentations.
    Kung L; Hession AO; Bracht JP
    J Dairy Sci; 1998 Aug; 81(8):2251-6. PubMed ID: 9749391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.
    Weimar MR; Cheung J; Dey D; McSweeney C; Morrison M; Kobayashi Y; Whitman WB; Carbone V; Schofield LR; Ronimus RS; Cook GM
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.