These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 32220211)

  • 1. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides.
    Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H
    J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic Dynamics in Janus MoSSe and WSSe Monolayers.
    Zheng T; Lin YC; Yu Y; Valencia-Acuna P; Puretzky AA; Torsi R; Liu C; Ivanov IN; Duscher G; Geohegan DB; Ni Z; Xiao K; Zhao H
    Nano Lett; 2021 Jan; 21(2):931-937. PubMed ID: 33405934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers.
    Qin H; Ren K; Zhang G; Dai Y; Zhang G
    Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mirror asymmetry induced nontrivial properties of polar WSSe/MoSSe heterostructures.
    Wang Y; Wei W; Huang B; Dai Y
    J Phys Condens Matter; 2019 Mar; 31(12):125003. PubMed ID: 30654357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe.
    Li F; Wei W; Zhao P; Huang B; Dai Y
    J Phys Chem Lett; 2017 Dec; 8(23):5959-5965. PubMed ID: 29169238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures.
    Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B
    Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Behaviors in Janus Transition-Metal Dichalcogenides: A Molecular Dynamics Simulation.
    Yang F; Shang J; Kou L; Li C; Deng Z
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides.
    Wang J; Shu H; Zhao T; Liang P; Wang N; Cao D; Chen X
    Phys Chem Chem Phys; 2018 Jul; 20(27):18571-18578. PubMed ID: 29953140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study.
    Guo W; Ge X; Sun S; Xie Y; Ye X
    Phys Chem Chem Phys; 2020 Mar; 22(9):4946-4956. PubMed ID: 32073069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study.
    Yu L; Sun S; Ye X
    Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer.
    Li F; Wang Y; Liang Y; Dai Y; Huang B; Wei W
    J Phys Condens Matter; 2023 May; 35(30):. PubMed ID: 37094583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacking engineering induced Z-scheme MoSSe/WSSe heterostructure for photocatalytic water splitting.
    Ren L; Liu Z; Ma Z; Ren K; Cui Z; Mu W
    Front Chem; 2024; 12():1425306. PubMed ID: 39006489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles investigation of potential water-splitting photocatalysts and photovoltaic materials based on Janus transition-metal dichalcogenide/WSe
    Ayele ST; Obodo KO; Asres GA
    RSC Adv; 2022 Nov; 12(49):31518-31524. PubMed ID: 36380918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH)
    Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J
    RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional Janus MGeSiP
    Hiep NT; Anh NPQ; Phuc HV; Nguyen CQ; Hieu NN; Vi VTT
    Phys Chem Chem Phys; 2023 Mar; 25(12):8779-8788. PubMed ID: 36912122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-tunable electronic structure and anisotropic transport properties in Janus MoSSe and g-SiC van der Waals heterostructure.
    Liu YL; Zhao WK; Shi Y; Yang CL
    Phys Chem Chem Phys; 2021 Apr; 23(15):9440-9447. PubMed ID: 33885100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS
    Strasser A; Wang H; Qian X
    Nano Lett; 2022 May; 22(10):4145-4152. PubMed ID: 35532538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipole moment and pressure dependent interlayer excitons in MoSSe/WSSe heterostructures.
    Pang R; Wang S
    Nanoscale; 2022 Mar; 14(9):3416-3424. PubMed ID: 35113117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides.
    Idrees M; Din HU; Rehman SU; Shafiq M; Saeed Y; Bui HD; Nguyen CV; Amin B
    Phys Chem Chem Phys; 2020 May; 22(18):10351-10359. PubMed ID: 32365147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.