These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32220531)

  • 1. Advance spectral approach for condition evaluation of rolling element bearings.
    Tiwari P; Upadhyay SH
    ISA Trans; 2020 Aug; 103():366-389. PubMed ID: 32220531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
    Ma J; Wu J; Wang X
    ISA Trans; 2018 Sep; 80():297-311. PubMed ID: 29880275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method.
    Kumar PS; Kumaraswamidhas LA; Laha SK
    ISA Trans; 2021 Jun; 112():386-401. PubMed ID: 33341238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of higher order spectral features and support vector machines for bearing faults classification.
    Saidi L; Ben Ali J; Fnaiech F
    ISA Trans; 2015 Jan; 54():193-206. PubMed ID: 25282095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compound fault extraction method via self-adaptively determining the number of decomposition layers of the variational mode decomposition.
    Zhang Z; Zhang X; Zhang P; Wu F; Li X
    Rev Sci Instrum; 2018 Aug; 89(8):085110. PubMed ID: 30184705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.
    Liu J; Hu Y; Wu B; Wang Y; Xie F
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28524088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An information-based K-singular-value decomposition method for rolling element bearing diagnosis.
    Liang K; Zhao M; Lin J; Jiao J
    ISA Trans; 2020 Jan; 96():444-456. PubMed ID: 31208882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visibility Graph Feature Model of Vibration Signals: A Novel Bearing Fault Diagnosis Approach.
    Zhang Z; Qin Y; Jia L; Chen X
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30428560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.
    Xue L; Li N; Lei Y; Li N
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved local mean decomposition method based on improved composite interpolation envelope and its application in bearing fault feature extraction.
    Li X; Ma J; Wang X; Wu J; Li Z
    ISA Trans; 2020 Feb; 97():365-383. PubMed ID: 31395284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.
    Yasir MN; Koh BH
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD.
    Feng Z; Wang Z; Liu X; Li J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.
    Zhou S; Qian S; Chang W; Xiao Y; Cheng Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings.
    Luo M; Li C; Zhang X; Li R; An X
    ISA Trans; 2016 Nov; 65():556-566. PubMed ID: 27622428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection.
    Maliuk AS; Prosvirin AE; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution.
    Cheng L; Xia X; Ye L
    Sci Prog; 2020; 103(1):36850419892194. PubMed ID: 31791201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.