These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 32220553)
1. Membrane activity of two short Trp-rich amphipathic peptides. Bozelli JC; Yune J; Dang X; Narayana JL; Wang G; Epand RM Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183280. PubMed ID: 32220553 [TBL] [Abstract][Full Text] [Related]
2. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a. Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393 [TBL] [Abstract][Full Text] [Related]
3. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Wieprecht T; Apostolov O; Beyermann M; Seelig J Biochemistry; 2000 Jan; 39(2):442-52. PubMed ID: 10631006 [TBL] [Abstract][Full Text] [Related]
4. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Andrushchenko VV; Aarabi MH; Nguyen LT; Prenner EJ; Vogel HJ Biochim Biophys Acta; 2008 Apr; 1778(4):1004-14. PubMed ID: 18222168 [TBL] [Abstract][Full Text] [Related]
6. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
7. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923 [TBL] [Abstract][Full Text] [Related]
8. Dynamic turn conformation of a short tryptophan-rich cationic antimicrobial peptide and its interaction with phospholipid membranes. Nichols M; Kuljanin M; Nategholeslam M; Hoang T; Vafaei S; Tomberli B; Gray CG; DeBruin L; Jelokhani-Niaraki M J Phys Chem B; 2013 Nov; 117(47):14697-708. PubMed ID: 24195729 [TBL] [Abstract][Full Text] [Related]
9. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. Alvares DS; Wilke N; Ruggiero Neto J Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697 [TBL] [Abstract][Full Text] [Related]
10. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Kobayashi S; Takeshima K; Park CB; Kim SC; Matsuzaki K Biochemistry; 2000 Jul; 39(29):8648-54. PubMed ID: 10913273 [TBL] [Abstract][Full Text] [Related]
11. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ; Seaton P; Pokorny A Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602 [TBL] [Abstract][Full Text] [Related]
12. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Jin Y; Mozsolits H; Hammer J; Zmuda E; Zhu F; Zhang Y; Aguilar MI; Blazyk J Biochemistry; 2003 Aug; 42(31):9395-405. PubMed ID: 12899626 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Bi X; Wang C; Dong W; Zhu W; Shang D J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141 [TBL] [Abstract][Full Text] [Related]
14. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318 [TBL] [Abstract][Full Text] [Related]
15. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552 [TBL] [Abstract][Full Text] [Related]
16. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity. Bagheri M; Amininasab M; Dathe M Chemistry; 2018 Sep; 24(53):14242-14253. PubMed ID: 29969522 [TBL] [Abstract][Full Text] [Related]
17. Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. Strömstedt AA; Pasupuleti M; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2009 Sep; 1788(9):1916-23. PubMed ID: 19505433 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of the peptides temporin-Ra and temporin-Rb and interactions with model membranes. Lopes JLS; Araujo CCF; Neves RC; Bürck J; Couto SG Eur Biophys J; 2022 Sep; 51(6):493-502. PubMed ID: 35978176 [TBL] [Abstract][Full Text] [Related]
19. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
20. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]