These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32220785)

  • 21. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination.
    Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR
    Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytohormone crosstalk research: cytokinin and its crosstalk with other phytohormones.
    Seif El-Yazal SA; Seif El-Yazal MA; Dwidar EF; Rady MM
    Curr Protein Pept Sci; 2015; 16(5):395-405. PubMed ID: 25824387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.
    Yu Y; Wang J; Shi H; Gu J; Dong J; Deng XW; Huang R
    Plant Physiol; 2016 Apr; 170(4):2340-50. PubMed ID: 26850275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1).
    Yoong FY; O'Brien LK; Truco MJ; Huo H; Sideman R; Hayes R; Michelmore RW; Bradford KJ
    Plant Physiol; 2016 Jan; 170(1):472-88. PubMed ID: 26574598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auxin and ethylene: collaborators or competitors?
    Muday GK; Rahman A; Binder BM
    Trends Plant Sci; 2012 Apr; 17(4):181-95. PubMed ID: 22406007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First off the mark: early seed germination.
    Weitbrecht K; Müller K; Leubner-Metzger G
    J Exp Bot; 2011 Jun; 62(10):3289-309. PubMed ID: 21430292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of 4 TaGAST genes during spike development and seed germination and their response to exogenous phytohormones in common wheat.
    Kim YJ; Kim JY; Yoon JS; Kim DY; Hong MJ; Seo YW
    Mol Biol Rep; 2016 Dec; 43(12):1435-1449. PubMed ID: 27649990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide (NO) and phytohormones crosstalk during early plant development.
    Sanz L; Albertos P; Mateos I; Sánchez-Vicente I; Lechón T; Fernández-Marcos M; Lorenzo O
    J Exp Bot; 2015 May; 66(10):2857-68. PubMed ID: 25954048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications.
    Sami A; Riaz MW; Zhou X; Zhu Z; Zhou K
    BMC Plant Biol; 2019 Dec; 19(1):577. PubMed ID: 31870301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones.
    Daszkowska-Golec A
    OMICS; 2011 Nov; 15(11):763-74. PubMed ID: 22011341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.
    Clemente AC; Guimarães RM; Martins DC; Gomes LA; Caixeta F; Reis RG; Rosa SD
    Genet Mol Res; 2015 May; 14(2):4703-15. PubMed ID: 25966245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.
    Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J
    BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The signalling role of ROS in the regulation of seed germination and dormancy.
    Bailly C
    Biochem J; 2019 Oct; 476(20):3019-3032. PubMed ID: 31657442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Seed dormancy alleviation and oxidative signaling].
    Bailly C; El Maarouf Bouteau H; Corbineau F
    J Soc Biol; 2008; 202(3):241-8. PubMed ID: 18980746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytohormone signalling pathways interact with sugars during seed germination and seedling development.
    Yuan K; Wysocka-Diller J
    J Exp Bot; 2006; 57(12):3359-67. PubMed ID: 16916886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seedling performance covaries with dormancy thresholds: maintaining cryptic seed heteromorphism in a fire-prone system.
    Liyanage GS; Ayre DJ; Ooi MK
    Ecology; 2016 Nov; 97(11):3009-3018. PubMed ID: 27870036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the Loess Plateau of northwestern China.
    Hu XW; Wu YP; Ding XY; Zhang R; Wang YR; Baskin JM; Baskin CC
    PLoS One; 2014; 9(11):e112579. PubMed ID: 25396423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scatter hoarding of seeds confers survival advantages and disadvantages to large-seeded tropical plants at different life stages.
    Kuprewicz EK
    PLoS One; 2015; 10(5):e0124932. PubMed ID: 25970832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seed germination and seedling emergence of three annuals growing on desert sand dunes in China.
    Tobe K; Zhang L; Omasa K
    Ann Bot; 2005 Mar; 95(4):649-59. PubMed ID: 15644383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.