These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32220819)
1. Volatile-char interactions during biomass pyrolysis: Cleavage of C-C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube. Huang Y; Liu S; Zhang J; Syed-Hassan SSA; Hu X; Sun H; Zhu X; Zhou J; Zhang S; Zhang H Bioresour Technol; 2020 Jul; 307():123192. PubMed ID: 32220819 [TBL] [Abstract][Full Text] [Related]
2. Volatile-char interactions during biomass pyrolysis: Understanding the potential origin of char activity. Huang Y; Liu S; Akhtar MA; Li B; Zhou J; Zhang S; Zhang H Bioresour Technol; 2020 Nov; 316():123938. PubMed ID: 32758923 [TBL] [Abstract][Full Text] [Related]
3. Impacts of temperature on evolution of char structure during pyrolysis of lignin. Zhang C; Shao Y; Zhang L; Zhang S; Westerhof RJM; Liu Q; Jia P; Li Q; Wang Y; Hu X Sci Total Environ; 2020 Jan; 699():134381. PubMed ID: 31677466 [TBL] [Abstract][Full Text] [Related]
4. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass. Qian TT; Li DC; Jiang H Environ Sci Technol; 2014 Sep; 48(18):10734-42. PubMed ID: 25154038 [TBL] [Abstract][Full Text] [Related]
5. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis. Wang S; Li Z; Bai X; Yi W; Fu P Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486 [TBL] [Abstract][Full Text] [Related]
6. Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles. Babinszki B; Sebestyén Z; Jakab E; Kőhalmi L; Bozi J; Várhegyi G; Wang L; Skreiberg Ø; Czégény Z Bioresour Technol; 2021 Oct; 338():125567. PubMed ID: 34303140 [TBL] [Abstract][Full Text] [Related]
7. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. Su S; Xiao LP; Chen X; Wang S; Chen XH; Guo Y; Zhai SR ChemSusChem; 2022 Jun; 15(12):e202200365. PubMed ID: 35438245 [TBL] [Abstract][Full Text] [Related]
8. Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis. Mafu LD; Neomagus HWJP; Everson RC; Strydom CA; Carrier M; Okolo GN; Bunt JR Bioresour Technol; 2017 Nov; 243():941-948. PubMed ID: 28738549 [TBL] [Abstract][Full Text] [Related]
9. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials. Li D; Briens C; Berruti F Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324 [TBL] [Abstract][Full Text] [Related]
10. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics. Fan H; Gu J; Wang Y; Yuan H; Chen Y; Luo B Waste Manag; 2021 Feb; 121():255-264. PubMed ID: 33388648 [TBL] [Abstract][Full Text] [Related]
11. Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis. Chen Y; Li C; Zhang L; Chen Q; Zhang S; Xiang J; Hu S; Wang Y; Hu X Chemosphere; 2023 Sep; 336():139248. PubMed ID: 37330062 [TBL] [Abstract][Full Text] [Related]
13. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. Shi X; Wang J Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069 [TBL] [Abstract][Full Text] [Related]
14. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Chen X; Li S; Liu Z; Chen Y; Yang H; Wang X; Che Q; Chen W; Chen H Bioresour Technol; 2019 Sep; 287():121493. PubMed ID: 31112930 [TBL] [Abstract][Full Text] [Related]
15. An efficient way to synthesize biomass-based molybdenum carbide catalyst via pyrolysis carbonization and its application for lignin catalytic pyrolysis. Yu J; Luo B; Wang Y; Wang S; Wu K; Liu C; Chu S; Zhang H Bioresour Technol; 2022 Feb; 346():126640. PubMed ID: 34971778 [TBL] [Abstract][Full Text] [Related]
16. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Zhu X; Li Y; Wang X Bioresour Technol; 2019 Sep; 288():121527. PubMed ID: 31136889 [TBL] [Abstract][Full Text] [Related]
17. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. Hu Q; Yang H; Yao D; Zhu D; Wang X; Shao J; Chen H Bioresour Technol; 2016 Jan; 200():521-7. PubMed ID: 26524250 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal. Yuan S; Chen XL; Li WF; Liu HF; Wang FC Bioresour Technol; 2011 Nov; 102(21):10124-30. PubMed ID: 21903383 [TBL] [Abstract][Full Text] [Related]
19. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Wang H; Wang X; Cui Y; Xue Z; Ba Y Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506 [TBL] [Abstract][Full Text] [Related]
20. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers. Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]