BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32220848)

  • 1. Synergistic Cues from Diverse Bacteria Enhance Multicellular Development in a Choanoflagellate.
    Ireland EV; Woznica A; King N
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates.
    Woznica A; Cantley AM; Beemelmanns C; Freinkman E; Clardy J; King N
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7894-9. PubMed ID: 27354530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Synthesis of a Bacterially Produced Inhibitor of Rosette Development in Choanoflagellates.
    Cantley AM; Woznica A; Beemelmanns C; King N; Clardy J
    J Am Chem Soc; 2016 Apr; 138(13):4326-9. PubMed ID: 26998963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals.
    Alegado RA; Brown LW; Cao S; Dermenjian RK; Zuzow R; Fairclough SR; Clardy J; King N
    Elife; 2012 Oct; 1():e00013. PubMed ID: 23066504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mating in the Closest Living Relatives of Animals Is Induced by a Bacterial Chondroitinase.
    Woznica A; Gerdt JP; Hulett RE; Clardy J; King N
    Cell; 2017 Sep; 170(6):1175-1183.e11. PubMed ID: 28867285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of the rosette-inducing factor RIF-1 and analogs.
    Beemelmanns C; Woznica A; Alegado RA; Cantley AM; King N; Clardy J
    J Am Chem Soc; 2014 Jul; 136(29):10210-3. PubMed ID: 24983513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing enables reverse genetics of multicellular development in the choanoflagellate
    Booth DS; King N
    Elife; 2020 Jun; 9():. PubMed ID: 32496191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A red algal polysaccharide influences the multicellular development of the choanoflagellate
    Perotti O; Esparza GV; Booth DS
    bioRxiv; 2024 May; ():. PubMed ID: 38798503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rosetteless gene controls development in the choanoflagellate S. rosetta.
    Levin TC; Greaney AJ; Wetzel L; King N
    Elife; 2014 Oct; 3():. PubMed ID: 25299189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lessons from simple marine models on the bacterial regulation of eukaryotic development.
    Woznica A; King N
    Curr Opin Microbiol; 2018 Jun; 43():108-116. PubMed ID: 29331767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta.
    Dayel MJ; Alegado RA; Fairclough SR; Levin TC; Nichols SA; McDonald K; King N
    Dev Biol; 2011 Sep; 357(1):73-82. PubMed ID: 21699890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective factors in the evolution of multicellularity in choanoflagellates.
    Koehl MAR
    J Exp Zool B Mol Dev Evol; 2021 Apr; 336(3):315-326. PubMed ID: 32198827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical principles of choanoflagellate self-organization.
    Larson BT; Ruiz-Herrero T; Lee S; Kumar S; Mahadevan L; King N
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1303-1311. PubMed ID: 31896587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular clue links bacteria to the origin of animals.
    Hadfield MG
    Elife; 2012 Oct; 1():e00242. PubMed ID: 23066508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prey capture and phagocytosis in the choanoflagellate Salpingoeca rosetta.
    Dayel MJ; King N
    PLoS One; 2014; 9(5):e95577. PubMed ID: 24806026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total Synthesis and Functional Evaluation of IORs, Sulfonolipid-based Inhibitors of Cell Differentiation in Salpingoeca rosetta.
    Raguž L; Peng CC; Rutaganira FUN; Krüger T; Stanišić A; Jautzus T; Kries H; Kniemeyer O; Brakhage AA; King N; Beemelmanns C
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202209105. PubMed ID: 35901418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins.
    Booth DS; Szmidt-Middleton H; King N
    Mol Biol Cell; 2018 Dec; 29(25):3026-3038. PubMed ID: 30281390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta.
    Fairclough SR; Chen Z; Kramer E; Zeng Q; Young S; Robertson HM; Begovic E; Richter DJ; Russ C; Westbrook MJ; Manning G; Lang BF; Haas B; Nusbaum C; King N
    Genome Biol; 2013 Feb; 14(2):R15. PubMed ID: 23419129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperatively generated stresslet flows supply fresh fluid to multicellular choanoflagellate colonies.
    Roper M; Dayel MJ; Pepper RE; Koehl MA
    Phys Rev Lett; 2013 May; 110(22):228104. PubMed ID: 23767751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The architecture of cell differentiation in choanoflagellates and sponge choanocytes.
    Laundon D; Larson BT; McDonald K; King N; Burkhardt P
    PLoS Biol; 2019 Apr; 17(4):e3000226. PubMed ID: 30978201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.