BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32220950)

  • 1. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround.
    Lakunina AA; Nardoci MB; Ahmadian Y; Jaramillo S
    J Neurosci; 2020 Apr; 40(18):3564-3575. PubMed ID: 32220950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of Receptive Fields and Sideband Inhibition with Complex Thalamocortical and Intracortical Origin in L2/3 of Mouse Primary Auditory Cortex.
    Liu J; Kanold PO
    J Neurosci; 2021 Apr; 41(14):3142-3162. PubMed ID: 33593857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection.
    Masri S; Chan N; Marsh T; Zinsmaier A; Schaub D; Zhang L; Wang W; Bao S
    J Neurosci; 2021 Oct; 41(42):8848-8857. PubMed ID: 34452937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation.
    Natan RG; Rao W; Geffen MN
    Cell Rep; 2017 Oct; 21(4):878-890. PubMed ID: 29069595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical Interneurons Differentially Regulate the Effects of Acoustic Context.
    Phillips EAK; Schreiner CE; Hasenstaub AR
    Cell Rep; 2017 Jul; 20(4):771-778. PubMed ID: 28746863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency.
    Moore AK; Wehr M
    J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of Distinct Auditory Cortical Inhibitory Neuron Types to the Detection of Sounds in Background Noise.
    Lakunina AA; Menashe N; Jaramillo S
    eNeuro; 2022; 9(2):. PubMed ID: 35168950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1.
    Nienborg H; Hasenstaub A; Nauhaus I; Taniguchi H; Huang ZJ; Callaway EM
    J Neurosci; 2013 Jul; 33(27):11145-54. PubMed ID: 23825418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex.
    Chen IW; Helmchen F; Lütcke H
    J Neurosci; 2015 Sep; 35(36):12560-73. PubMed ID: 26354921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.
    Li LY; Xiong XR; Ibrahim LA; Yuan W; Tao HW; Zhang LI
    Cereb Cortex; 2015 Jul; 25(7):1782-91. PubMed ID: 24425250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent.
    Novák O; Zelenka O; Hromádka T; Syka J
    J Neurophysiol; 2016 Apr; 115(4):1860-74. PubMed ID: 26823513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotine excites VIP interneurons to disinhibit pyramidal neurons in auditory cortex.
    Askew CE; Lopez AJ; Wood MA; Metherate R
    Synapse; 2019 Sep; 73(9):e22116. PubMed ID: 31081950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons.
    Rikhye RV; Yildirim M; Hu M; Breton-Provencher V; Sur M
    J Neurosci; 2021 Oct; 41(42):8761-8778. PubMed ID: 34493543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex.
    Yuan K; Shih JY; Winer JA; Schreiner CE
    J Neurosci; 2011 Sep; 31(37):13333-42. PubMed ID: 21917816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex.
    Kumar M; Xiong S; Tzounopoulos T; Anderson CT
    J Neurosci; 2019 Jan; 39(5):854-865. PubMed ID: 30504277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion.
    Henschke JU; Price AT; Pakan JMP
    Cell Calcium; 2021 Jun; 96():102390. PubMed ID: 33744780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of response reliability by parvalbumin-expressing interneurons in visual cortex.
    Zhu Y; Qiao W; Liu K; Zhong H; Yao H
    Nat Commun; 2015 Apr; 6():6802. PubMed ID: 25869033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells.
    Safari MS; Mirnajafi-Zadeh J; Hioki H; Tsumoto T
    Sci Rep; 2017 Oct; 7(1):12764. PubMed ID: 28986578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex.
    Kouvaros S; Kumar M; Tzounopoulos T
    Cereb Cortex; 2020 Jun; 30(7):3895-3909. PubMed ID: 32090251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.