These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32220953)

  • 1. Identifying Small Molecules That Promote Quasipalindrome-Associated Template-Switch Mutations in
    Klaric JA; Perr EL; Lovett ST
    G3 (Bethesda); 2020 May; 10(5):1809-1815. PubMed ID: 32220953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leading strand specific spontaneous mutation corrects a quasipalindrome by an intermolecular strand switch mechanism.
    Rosche WA; Trinh TQ; Sinden RR
    J Mol Biol; 1997 Jun; 269(2):176-87. PubMed ID: 9191063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events.
    Seier T; Padgett DR; Zilberberg G; Sutera VA; Toha N; Lovett ST
    Genetics; 2011 Jun; 188(2):247-62. PubMed ID: 21441210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSB recruitment of Exonuclease I aborts template-switching in Escherichia coli.
    Laranjo LT; Gross SJ; Zeiger DM; Lovett ST
    DNA Repair (Amst); 2017 Sep; 57():12-16. PubMed ID: 28605670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azidothymidine and other chain terminators are mutagenic for template-switch-generated genetic mutations.
    Seier T; Zilberberg G; Zeiger DM; Lovett ST
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6171-4. PubMed ID: 22474374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli.
    Viswanathan M; Lacirignola JJ; Hurley RL; Lovett ST
    J Mol Biol; 2000 Sep; 302(3):553-64. PubMed ID: 10986118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis and trans-acting effects on a mutational hotspot involving a replication template switch.
    Dutra BE; Lovett ST
    J Mol Biol; 2006 Feb; 356(2):300-11. PubMed ID: 16376936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli.
    Klaric JA; Glass DJ; Perr EL; Reuven AD; Towne MJ; Lovett ST
    Mutat Res; 2021; 822():111742. PubMed ID: 33743507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long inverted repeat transiently stalls DNA replication by forming hairpin structures on both leading and lagging strands.
    Lai PJ; Lim CT; Le HP; Katayama T; Leach DR; Furukohri A; Maki H
    Genes Cells; 2016 Feb; 21(2):136-45. PubMed ID: 26738888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-directed mutations. Leading and lagging strand specificity.
    Sinden RR; Hashem VI; Rosche WA
    Ann N Y Acad Sci; 1999 May; 870():173-89. PubMed ID: 10415482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous hotspot mutations resistant to mismatch correction in Escherichia coli: transcription-dependent mutagenesis involving template-switching mechanisms.
    Yoshiyama K; Maki H
    J Mol Biol; 2003 Mar; 327(1):7-18. PubMed ID: 12614604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and tolerance mechanisms for azidothymidine, a replication gap-promoting agent, in Escherichia coli.
    Cooper DL; Lovett ST
    DNA Repair (Amst); 2011 Mar; 10(3):260-70. PubMed ID: 21145792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli.
    Trinh TQ; Sinden RR
    Nature; 1991 Aug; 352(6335):544-7. PubMed ID: 1865910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins.
    Voineagu I; Narayanan V; Lobachev KS; Mirkin SM
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9936-41. PubMed ID: 18632578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activity and mechanism of action of 3'-azido-3'-deoxythymidine (BW A509U).
    Elwell LP; Ferone R; Freeman GA; Fyfe JA; Hill JA; Ray PH; Richards CA; Singer SC; Knick VB; Rideout JL
    Antimicrob Agents Chemother; 1987 Feb; 31(2):274-80. PubMed ID: 3551832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations on template switching during DNA replication through long inverted repeats.
    Ahmed A; Podemski L
    Gene; 1998 Nov; 223(1-2):187-94. PubMed ID: 9858727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Templated mutagenesis in bacteriophage T4 involving imperfect direct or indirect sequence repeats.
    Schultz GE; Drake JW
    Genetics; 2008 Feb; 178(2):661-73. PubMed ID: 18245334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein.
    Brown LT; Sutera VA; Zhou S; Weitzel CS; Cheng Y; Lovett ST
    PLoS Genet; 2015 Nov; 11(11):e1005651. PubMed ID: 26544712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase-specific differences in the DNA intermediates of frameshift mutagenesis. In vitro synthesis errors of Escherichia coli DNA polymerase I and its large fragment derivative.
    Papanicolaou C; Ripley LS
    J Mol Biol; 1989 May; 207(2):335-53. PubMed ID: 2666674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.