These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32221283)

  • 1. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight Potential of Anisotropic Plate Lattice Metamaterials.
    Maier M; Stangl C; Saage H; Huber O
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness.
    Tancogne-Dejean T; Diamantopoulou M; Gorji MB; Bonatti C; Mohr D
    Adv Mater; 2018 Nov; 30(45):e1803334. PubMed ID: 30230617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching theoretical strength in glassy carbonĀ nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.
    Berger JB; Wadley HN; McMeeking RM
    Nature; 2017 Mar; 543(7646):533-537. PubMed ID: 28219078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures.
    Guell Izard A; Bauer J; Crook C; Turlo V; Valdevit L
    Small; 2019 Nov; 15(45):e1903834. PubMed ID: 31531942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth.
    Maggi A; Li H; Greer JR
    Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soap film inspired mechanical metamaterials approaching theoretical bound of stiffness across full density range.
    Deng B; Cheng GJ
    Mater Horiz; 2021 Mar; 8(3):987-996. PubMed ID: 34821329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing complex architectured materials with generative adversarial networks.
    Mao Y; He Q; Zhao X
    Sci Adv; 2020 Apr; 6(17):eaaz4169. PubMed ID: 32494641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastically Isotropic Truss-Plate-Hybrid Hierarchical Microlattices with Enhanced Modulus and Strength.
    Wang Y; Xu F; Gao H; Li X
    Small; 2023 May; 19(18):e2206024. PubMed ID: 36748308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Hashin-Shtrikman bounds homogenization model for frequency analysis of imperfect FG bio-composite plates.
    Song G; Zou Y; Nie Y; Habibi M; Albaijan I; Toghroli E
    J Mech Behav Biomed Mater; 2024 Mar; 151():106321. PubMed ID: 38211502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bounds and self-consistent estimates for elastic constants of polycrystals composed of orthorhombics or crystals with higher symmetries.
    Berryman JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046130. PubMed ID: 21599263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization.
    Liu Y; Wang Y; Ren H; Meng Z; Chen X; Li Z; Wang L; Chen W; Wang Y; Du J
    Nat Commun; 2024 Apr; 15(1):2984. PubMed ID: 38582903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Publisher Correction: Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 May; 11(1):2398. PubMed ID: 32385255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.