These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32221305)

  • 1. A hybrid stochastic model of the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Peccoud J; Cao Y
    NPJ Syst Biol Appl; 2020 Mar; 6(1):7. PubMed ID: 32221305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Petri Net extension of a yeast cell cycle model.
    Mura I; Csikász-Nagy A
    J Theor Biol; 2008 Oct; 254(4):850-60. PubMed ID: 18703074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle.
    Liu Z; Pu Y; Li F; Shaffer CA; Hoops S; Tyson JJ; Cao Y
    J Chem Phys; 2012 Jan; 136(3):034105. PubMed ID: 22280742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle.
    Chen M; Amos BD; Watson LT; Tyson JJ; Cao Y; Shaffer CA; Trosset MW; Oguz C; Kakoti G
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):301-311. PubMed ID: 29990127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic Boolean model of normal and aberrant cell cycles in budding yeast.
    Taoma K; Tyson JJ; Laomettachit T; Kraikivski P
    NPJ Syst Biol Appl; 2024 Oct; 10(1):121. PubMed ID: 39420008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle.
    Laomettachit T; Kraikivski P; Tyson JJ
    Sci Rep; 2022 Nov; 12(1):20302. PubMed ID: 36434030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized dynamics and non-equilibrium steady states in a stochastic yeast cell-cycle network.
    Ge H; Qian H; Qian M
    Math Biosci; 2008 Jan; 211(1):132-52. PubMed ID: 18048065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic model of size control in the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Cao Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):322. PubMed ID: 31216979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy Analysis of Hybrid Stochastic Simulation Algorithm on Linear Chain Reaction Systems.
    Chen M; Wang S; Cao Y
    Bull Math Biol; 2019 Aug; 81(8):3024-3052. PubMed ID: 29992454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From ODES to language-based, executable models of biological systems.
    Palmisano A; Mura I; Priami C
    Pac Symp Biocomput; 2009; ():239-50. PubMed ID: 19209705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.
    Laomettachit T; Chen KC; Baumann WT; Tyson JJ
    PLoS One; 2016; 11(5):e0153738. PubMed ID: 27187804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process.
    Lv C; Li X; Li F; Li T
    PLoS Comput Biol; 2015 Mar; 11(3):e1004156. PubMed ID: 25794282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.
    Barik D; Ball DA; Peccoud J; Tyson JJ
    PLoS Comput Biol; 2016 Dec; 12(12):e1005230. PubMed ID: 27935947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and remedy of negativity problem in hybrid stochastic simulation algorithm and its application.
    Chen M; Cao Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):315. PubMed ID: 31216983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid deterministic/stochastic simulation of complex biochemical systems.
    Lecca P; Bagagiolo F; Scarpa M
    Mol Biosyst; 2017 Nov; 13(12):2672-2686. PubMed ID: 29058744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic hybrid modeling of intracellular calcium dynamics.
    Choi T; Maurya MR; Tartakovsky DM; Subramaniam S
    J Chem Phys; 2010 Oct; 133(16):165101. PubMed ID: 21033822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mRNA Gestation and Senescence in Noise Reduction during the Cell Cycle.
    Csikász-Nagy A; Mura I
    Stud Health Technol Inform; 2011; 162():236-43. PubMed ID: 21685575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative analysis of cell cycle control in budding yeast.
    Chen KC; Calzone L; Csikasz-Nagy A; Cross FR; Novak B; Tyson JJ
    Mol Biol Cell; 2004 Aug; 15(8):3841-62. PubMed ID: 15169868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation Strategies for Calcium Microdomains and Calcium Noise.
    Wieder N; Fink RHA; von Wegner F
    Adv Exp Med Biol; 2020; 1131():771-797. PubMed ID: 31646534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes.
    Soltani M; Vargas-Garcia CA; Antunes D; Singh A
    PLoS Comput Biol; 2016 Aug; 12(8):e1004972. PubMed ID: 27536771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.