BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32221534)

  • 1. Effect of Drying Temperatures and Exposure Times on Aspergillus flavus Growth and Aflatoxin Production on Artificially Inoculated Hazelnuts.
    Valente S; Meloni GR; Prencipe S; Spigolon N; Somenzi M; Fontana M; Gullino ML; Spadaro D
    J Food Prot; 2020 Jul; 83(7):1241-1247. PubMed ID: 32221534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and Aflatoxin B1, B2, G1, and G2 Production by Aspergillus flavus and Aspergillus parasiticus on Ground Flax Seeds (Linum usitatissimum).
    Ting WTE; Chang CH; Szonyi B; Gizachew D
    J Food Prot; 2020 Jun; 83(6):975-983. PubMed ID: 32034398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing fungal and aflatoxin levels in Turkish hazelnuts (Corylus avellana L.) during growth, harvest, drying and storage: a 3-year study.
    Ozay G; Seyhan F; Pembeci C; Saklar S; Yilmaz A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Feb; 25(2):209-18. PubMed ID: 18286411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of aflatoxin B
    Schabo DC; Martins LM; Maciel JF; Iamanaka BT; Taniwaki MH; Schaffner DW; Magnani M
    Food Microbiol; 2020 Aug; 89():103456. PubMed ID: 32139000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chestnut Drying Is Critical in Determining
    Prencipe S; Siciliano I; Gatti C; Gullino ML; Garibaldi A; Spadaro D
    Toxins (Basel); 2018 Dec; 10(12):. PubMed ID: 30544921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different postharvest drying temperatures on Aspergillus flavus survival and aflatoxin content in five maize hybrids.
    Hawkins LK; Windham GL; Williams WP
    J Food Prot; 2005 Jul; 68(7):1521-4. PubMed ID: 16013400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of Aflatoxins B
    Maxwell LA; Callicott KA; Bandyopadhyay R; Mehl HL; Orbach MJ; Cotty PJ
    Plant Dis; 2021 Sep; 105(9):2343-2350. PubMed ID: 33754847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature.
    Gizachew D; Chang CH; Szonyi B; De La Torre S; Ting WE
    Int J Food Microbiol; 2019 May; 296():8-13. PubMed ID: 30825812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behaviour of Aspergillus parasiticus in aflatoxin production as influenced by storage parameters using response surface methodology approach.
    Akinola SA; Ateba CN; Mwanza M
    Int J Food Microbiol; 2021 Nov; 357():109369. PubMed ID: 34474198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.
    Dasan BG; Mutlu M; Boyaci IH
    Int J Food Microbiol; 2016 Jan; 216():50-9. PubMed ID: 26398284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aflatoxins in hazelnuts and dried figs: Occurrence and exposure assessment.
    Kabak B
    Food Chem; 2016 Nov; 211():8-16. PubMed ID: 27283601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the effect of temperature and water activity on the growth rate of Aspergillus flavus and aflatoxin production in peanut meal extract agar.
    Norlia M; Jinap S; Nor-Khaizura MAR; Radu S; John JM; Rahman MAH; Peter ML; Sharif Z
    Int J Food Microbiol; 2020 Dec; 335():108836. PubMed ID: 33065380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Aspergillus flavus contamination on the fungal community succession, mycotoxin production and storage quality of maize kernels at various temperatures.
    Shi H; Li J; Zhao Y; Mao J; Wang H; Zhu J
    Food Res Int; 2023 Dec; 174(Pt 2):113662. PubMed ID: 37981378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin B
    Mateo EM; Gómez JV; Gimeno-Adelantado JV; Romera D; Mateo-Castro R; Jiménez M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):1039-1051. PubMed ID: 28349747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of water activity and temperature on growth, gene expression, and aflatoxin B
    Natarajan S; Balachandar D; Senthil N; Paranidharan V
    Int J Food Microbiol; 2022 Jan; 361():109457. PubMed ID: 34742145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts.
    Siciliano I; Dal Bello B; Zeppa G; Spadaro D; Gullino ML
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28230792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins.
    Siciliano I; Spadaro D; Prelle A; Vallauri D; Cavallero MC; Garibaldi A; Gullino ML
    Toxins (Basel); 2016 Apr; 8(5):. PubMed ID: 27128939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of Gaseous Ozone (O
    Baazeem A; Medina A; Magan N
    Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus.
    Wicklow DT; Shotwell OL
    Can J Microbiol; 1983 Jan; 29(1):1-5. PubMed ID: 6403210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Ugandan Endemic
    Wokorach G; Landschoot S; Lakot A; Karyeija SA; Audenaert K; Echodu R; Haesaert G
    Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.