BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32221919)

  • 1. Proteome-Wide Quantitative Phosphoproteomic Analysis of Trypanosoma brucei Insect and Mammalian Life Cycle Stages.
    Benz C; Urbaniak MD
    Methods Mol Biol; 2020; 2116():125-137. PubMed ID: 32221919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei.
    Urbaniak MD; Martin DM; Ferguson MA
    J Proteome Res; 2013 May; 12(5):2233-44. PubMed ID: 23485197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole proteome analysis of the protozoan parasite Trypanosoma brucei using stable isotope labeling by amino acids in cell culture and mass spectrometry.
    Cirovic O; Ochsenreiter T
    Methods Mol Biol; 2014; 1188():47-55. PubMed ID: 25059603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages.
    Urbaniak MD; Guther ML; Ferguson MA
    PLoS One; 2012; 7(5):e36619. PubMed ID: 22574199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei.
    Colasante C; Ellis M; Ruppert T; Voncken F
    Proteomics; 2006 Jun; 6(11):3275-93. PubMed ID: 16622829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism.
    Batista M; Kugeratski FG; de Paula Lima CV; Probst CM; Kessler RL; de Godoy LM; Krieger MA; Marchini FK
    J Proteomics; 2017 Feb; 154():118-127. PubMed ID: 28039027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage.
    Zhang X; An T; Pham KTM; Lun ZR; Li Z
    mSphere; 2019 May; 4(3):. PubMed ID: 31043517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SILAC in biomarker discovery.
    Orsburn BC
    Methods Mol Biol; 2013; 1002():123-31. PubMed ID: 23625400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics.
    Güther ML; Urbaniak MD; Tavendale A; Prescott A; Ferguson MA
    J Proteome Res; 2014 Jun; 13(6):2796-806. PubMed ID: 24792668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry.
    Gunasekera K; Wüthrich D; Braga-Lagache S; Heller M; Ochsenreiter T
    BMC Genomics; 2012 Oct; 13():556. PubMed ID: 23067041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness.
    Nett IR; Martin DM; Miranda-Saavedra D; Lamont D; Barber JD; Mehlert A; Ferguson MA
    Mol Cell Proteomics; 2009 Jul; 8(7):1527-38. PubMed ID: 19346560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast.
    Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE; Maček B
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091686. PubMed ID: 28572185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery.
    Butter F; Bucerius F; Michel M; Cicova Z; Mann M; Janzen CJ
    Mol Cell Proteomics; 2013 Jan; 12(1):172-9. PubMed ID: 23090971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Proteomics and Phosphoproteomics Analysis of Trypanosoma cruzi During Differentiation.
    Batista M; Amorim JC; Lucena ACR; Kugeratski FG; de Paula Lima CV; Marchini FK
    Methods Mol Biol; 2020; 2116():139-159. PubMed ID: 32221920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics Analysis of Colorectal Cancer Cells.
    Chauvin A; Boisvert FM
    Methods Mol Biol; 2018; 1765():155-166. PubMed ID: 29589306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Proteomics and Phosphoproteomics Analysis of Leishmania spp. During Differentiation.
    Pawar H; Sathe G; Patole MS
    Methods Mol Biol; 2020; 2116():161-176. PubMed ID: 32221921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of paralogous life-cycle stage specific cytoskeletal proteins in the parasite Trypanosoma brucei.
    Portman N; Gull K
    PLoS One; 2014; 9(9):e106777. PubMed ID: 25180513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excreted/secreted proteins from trypanosome procyclic strains.
    Atyame Nten CM; Sommerer N; Rofidal V; Hirtz C; Rossignol M; Cuny G; Peltier JB; Geiger A
    J Biomed Biotechnol; 2010; 2010():212817. PubMed ID: 20011064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast.
    Maček B; Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.top079814. PubMed ID: 28572211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.