These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32221939)

  • 1. Gel-Based Methods for the Investigation of Signal Transduction Pathways in Trypanosoma brucei.
    Szöőr B; Cayla M
    Methods Mol Biol; 2020; 2116():497-522. PubMed ID: 32221939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness.
    Nett IR; Martin DM; Miranda-Saavedra D; Lamont D; Barber JD; Mehlert A; Ferguson MA
    Mol Cell Proteomics; 2009 Jul; 8(7):1527-38. PubMed ID: 19346560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn(II)-Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large Phosphoprotein.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    Methods Mol Biol; 2017; 1599():113-126. PubMed ID: 28477115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel.
    Kinoshita-Kikuta E; Kinoshita E; Matsuda A; Koike T
    Proteomics; 2014 Nov; 14(21-22):2437-42. PubMed ID: 25266391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of protein kinases by Phos-tag SDS-PAGE.
    Sugiyama Y; Uezato Y
    J Proteomics; 2022 Mar; 255():104485. PubMed ID: 35065289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism.
    Batista M; Kugeratski FG; de Paula Lima CV; Probst CM; Kessler RL; de Godoy LM; Krieger MA; Marchini FK
    J Proteomics; 2017 Feb; 154():118-127. PubMed ID: 28039027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage.
    Zhang X; An T; Pham KTM; Lun ZR; Li Z
    mSphere; 2019 May; 4(3):. PubMed ID: 31043517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Multisite Phosphorylation of Intrinsically Disordered Proteins Using Phos-tag SDS-PAGE.
    Örd M; Loog M
    Methods Mol Biol; 2020; 2141():779-792. PubMed ID: 32696389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosomatid protein phosphatases.
    Szöör B
    Mol Biochem Parasitol; 2010 Oct; 173(2):53-63. PubMed ID: 20594956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    Nat Protoc; 2009; 4(10):1513-21. PubMed ID: 19798084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling.
    Kinoshita E; Kinoshita-Kikuta E
    Proteomics; 2011 Jan; 11(2):319-23. PubMed ID: 21204258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanosoma brucei: characterization of protein kinases that are capable of autophosphorylation in vitro.
    Hide G; Graham T; Buchanan N; Tait A; Keith K
    Parasitology; 1994 Feb; 108 ( Pt 2)():161-6. PubMed ID: 8159461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and validation of new ERK substrates by phosphoproteomic technologies including Phos-tag SDS-PAGE.
    Yoshikawa H; Nishino K; Kosako H
    J Proteomics; 2022 Apr; 258():104543. PubMed ID: 35231659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorting the Muck from the Brass: Analysis of Protein Complexes and Cell Lysates.
    Zoltner M; Del Pino RC; Field MC
    Methods Mol Biol; 2020; 2116():645-653. PubMed ID: 32221947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE.
    Okawara Y; Hirano H; Kimura A; Sato N; Hayashi Y; Osada M; Kawakami T; Ootake N; Kinoshita E; Fujita K
    J Proteomics; 2021 Jan; 231():104005. PubMed ID: 33035715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nuclear proteome of Trypanosoma brucei.
    Goos C; Dejung M; Janzen CJ; Butter F; Kramer S
    PLoS One; 2017; 12(7):e0181884. PubMed ID: 28727848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation and characterization of glycosyltransferase mutants of Trypanosoma brucei.
    Izquierdo L; Güther ML; Ferguson MA
    Methods Mol Biol; 2013; 1022():249-75. PubMed ID: 23765667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of tyrosine kinase activity in the protozoan parasite Trypanosoma brucei.
    Wheeler-Alm E; Shapiro SZ
    J Protozool; 1992; 39(3):413-6. PubMed ID: 1640387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Peroxisome Biogenesis by Phos-Tag SDS-PAGE.
    Okumoto K; Fujiki Y
    Methods Mol Biol; 2023; 2643():207-215. PubMed ID: 36952188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct patterns of tyrosine phosphorylation during the life cycle of Trypanosoma brucei.
    Parsons M; Valentine M; Deans J; Schieven GL; Ledbetter JA
    Mol Biochem Parasitol; 1991 Apr; 45(2):241-8. PubMed ID: 1710035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.