These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32221939)

  • 21. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans.
    Savage AF; Kolev NG; Franklin JB; Vigneron A; Aksoy S; Tschudi C
    PLoS One; 2016; 11(12):e0168877. PubMed ID: 28002435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Protein Phosphorylation Using Phos-Tag Gels.
    Nagy Z; Comer S; Smolenski A
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e64. PubMed ID: 30044546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phos-Tag Fluorescent Gel Staining for the Quantitative Detection of His- and Asp-Phosphorylated Proteins.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Methods Mol Biol; 2021; 2261():73-78. PubMed ID: 33420985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation and identification of four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity electrophoresis.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Electrophoresis; 2012 Mar; 33(5):849-55. PubMed ID: 22522539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response.
    Kafková L; Tu C; Pazzo KL; Smith KP; Debler EW; Paul KS; Qu J; Read LK
    mBio; 2018 Dec; 9(6):. PubMed ID: 30563898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overproduction, purification and characterisation of Tbj1, a novel Type III Hsp40 from Trypanosoma brucei, the African sleeping sickness parasite.
    Louw CA; Ludewig MH; Blatch GL
    Protein Expr Purif; 2010 Feb; 69(2):168-77. PubMed ID: 19815073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Target of rapamycin (TOR)-like 1 kinase is involved in the control of polyphosphate levels and acidocalcisome maintenance in Trypanosoma brucei.
    de Jesus TC; Tonelli RR; Nardelli SC; da Silva Augusto L; Motta MC; Girard-Dias W; Miranda K; Ulrich P; Jimenez V; Barquilla A; Navarro M; Docampo R; Schenkman S
    J Biol Chem; 2010 Jul; 285(31):24131-40. PubMed ID: 20495004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The phosphoinositide regulatory network in Trypanosoma brucei: Implications for cell-wide regulation in eukaryotes.
    Cestari I; Stuart K
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008689. PubMed ID: 33119588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei.
    McAllaster MR; Ikeda KN; Lozano-Núñez A; Anrather D; Unterwurzacher V; Gossenreiter T; Perry JA; Crickley R; Mercadante CJ; Vaughan S; de Graffenried CL
    Mol Biol Cell; 2015 Sep; 26(17):3013-29. PubMed ID: 26133384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells.
    Guy GR; Philip R; Tan YH
    Electrophoresis; 1994; 15(3-4):417-40. PubMed ID: 8055870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parasite Polyamines as Pharmaceutical Targets.
    Roberts S; Ullman B
    Curr Pharm Des; 2017; 23(23):3325-3341. PubMed ID: 28571553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation differences among proteins of bloodstream developmental stages of Trypanosoma brucei brucei.
    Aboagye-Kwarteng T; ole-MoiYoi OK; Lonsdale-Eccles JD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):7-14. PubMed ID: 2018486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteome-Wide Quantitative Phosphoproteomic Analysis of Trypanosoma brucei Insect and Mammalian Life Cycle Stages.
    Benz C; Urbaniak MD
    Methods Mol Biol; 2020; 2116():125-137. PubMed ID: 32221919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNAi screening identifies Trypanosoma brucei stress response protein kinases required for survival in the mouse.
    Fernandez-Cortes F; Serafim TD; Wilkes JM; Jones NG; Ritchie R; McCulloch R; Mottram JC
    Sci Rep; 2017 Jul; 7(1):6156. PubMed ID: 28733613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular control of irreversible bistability during trypanosome developmental commitment.
    Domingo-Sananes MR; Szöőr B; Ferguson MA; Urbaniak MD; Matthews KR
    J Cell Biol; 2015 Oct; 211(2):455-68. PubMed ID: 26483558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutral Phosphate-Affinity SDS-PAGE system for profiling of protein phosphorylation.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Methods Mol Biol; 2015; 1295():323-54. PubMed ID: 25820732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE.
    Motani K; Kosako H
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):57-61. PubMed ID: 29883688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation.
    Avila CC; Peacock L; Machado FC; Gibson W; Schenkman S; Carrington M; Castilho BA
    Mol Biochem Parasitol; 2016; 205(1-2):16-21. PubMed ID: 26996431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoinositide signaling and regulation in Trypanosoma brucei: Specialized functions in a protozoan pathogen.
    Cestari I
    PLoS Pathog; 2020 Jan; 16(1):e1008167. PubMed ID: 31895930
    [No Abstract]   [Full Text] [Related]  

  • 40. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes.
    Schneider A; Bursać D; Lithgow T
    Trends Cell Biol; 2008 Jan; 18(1):12-8. PubMed ID: 18068984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.