BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 32222227)

  • 1. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy.
    Otero J; Navajas D; Alcaraz J
    Methods Cell Biol; 2020; 156():59-83. PubMed ID: 32222227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy.
    Giménez A; Uriarte JJ; Vieyra J; Navajas D; Alcaraz J
    Microsc Res Tech; 2017 Jan; 80(1):85-96. PubMed ID: 27535539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: implications for joint degeneration and osteoarthritis.
    Kwok J; Grogan S; Meckes B; Arce F; Lal R; D'Lima D
    Nanomedicine; 2014 Nov; 10(8):1777-85. PubMed ID: 24972006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy.
    Alcaraz J; Otero J; Jorba I; Navajas D
    Semin Cell Dev Biol; 2018 Jan; 73():71-81. PubMed ID: 28743639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of biomechanical properties of the extracellular and pericellular matrix and their interconnection throughout the course of osteoarthritis.
    Danalache M; Jacobi LF; Schwitalle M; Hofmann UK
    J Biomech; 2019 Dec; 97():109409. PubMed ID: 31629545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental extraction of Young's modulus of MCF-7 tissue using atomic force microscopy and the spherical contact models.
    Mirzaluo M; Fereiduni F; Taheri M; Modabberifar M
    Eur Biophys J; 2023 Feb; 52(1-2):81-90. PubMed ID: 36928920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy.
    Viji Babu PK; Rianna C; Mirastschijski U; Radmacher M
    Sci Rep; 2019 Aug; 9(1):12317. PubMed ID: 31444369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples.
    Schillers H; Rianna C; Schäpe J; Luque T; Doschke H; Wälte M; Uriarte JJ; Campillo N; Michanetzis GPA; Bobrowska J; Dumitru A; Herruzo ET; Bovio S; Parot P; Galluzzi M; Podestà A; Puricelli L; Scheuring S; Missirlis Y; Garcia R; Odorico M; Teulon JM; Lafont F; Lekka M; Rico F; Rigato A; Pellequer JL; Oberleithner H; Navajas D; Radmacher M
    Sci Rep; 2017 Jul; 7(1):5117. PubMed ID: 28698636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling native pulmonary basement membrane stiffness using atomic force microscopy.
    Hartmann B; Fleischhauer L; Nicolau M; Jensen THL; Taran FA; Clausen-Schaumann H; Reuten R
    Nat Protoc; 2024 May; 19(5):1498-1528. PubMed ID: 38429517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An AFM-Based Nanomechanical Study of Ovarian Tissues with Pathological Conditions.
    Ansardamavandi A; Tafazzoli-Shadpour M; Omidvar R; Nili F
    Int J Nanomedicine; 2020; 15():4333-4350. PubMed ID: 32606681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.
    Chiou YW; Lin HK; Tang MJ; Lin HH; Yeh ML
    PLoS One; 2013; 8(10):e77384. PubMed ID: 24194882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy.
    Darling EM; Wilusz RE; Bolognesi MP; Zauscher S; Guilak F
    Biophys J; 2010 Jun; 98(12):2848-56. PubMed ID: 20550897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Atomic Force Microscopy to Detect Early Osteoarthritis.
    Danalache M; Tiwari A; Sigwart V; Hofmann UK
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Force Microscopy for Live-Cell and Hydrogel Measurement.
    Whitehead AJ; Kirkland NJ; Engler AJ
    Methods Mol Biol; 2021; 2299():217-226. PubMed ID: 34028746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of endogenous extracellular matrix in biomechanical properties of human skin model.
    Pillet F; Gibot L; Madi M; Rols MP; Dague E
    Biofabrication; 2017 May; 9(2):025017. PubMed ID: 28493850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Matrices of Variable Stiffness for the Study of Mechanotransduction in Schwann Cell Development.
    Urbanski MM; Melendez-Vasquez CV
    Methods Mol Biol; 2018; 1739():281-297. PubMed ID: 29546714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating nanoscale mechanical properties of diabetic human adipose tissue using atomic force microscopy.
    Wenderott JK; Flesher CG; Baker NA; Neeley CK; Varban OA; Lumeng CN; Muhammad LN; Yeh C; Green PF; O'Rourke RW
    Sci Rep; 2020 Nov; 10(1):20423. PubMed ID: 33235234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: from single cell to tissue level.
    Stylianou A; Lekka M; Stylianopoulos T
    Nanoscale; 2018 Dec; 10(45):20930-20945. PubMed ID: 30406223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.