BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32222244)

  • 21. Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids.
    Hafez E; Moon BS; Shaban SM; Pyun DG; Kim DH
    Mikrochim Acta; 2021 Nov; 188(12):423. PubMed ID: 34792665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A surface plasmon resonance sensing method for determining captopril based on in situ formation of silver nanoparticles using ascorbic acid.
    Rastegarzadeh S; Hashemi F
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():536-41. PubMed ID: 24334017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ratiometric detection of alkaline phosphatase based on aggregation-induced emission enhancement.
    Qu F; Meng L; Zi Y; You J
    Anal Bioanal Chem; 2019 Nov; 411(28):7431-7440. PubMed ID: 31655858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alkaline Phosphatase-Triggered Etching of Au@FeOOH Nanoparticles for Enzyme Level Assay under Dark-Field Microscopy.
    Wang H; Xu CH; Zhao W; Chen HY; Xu JJ
    Anal Chem; 2021 Aug; 93(30):10727-10734. PubMed ID: 34297532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitive Multicolor Visual Detection of Exosomes via Dual Signal Amplification Strategy of Enzyme-Catalyzed Metallization of Au Nanorods and Hybridization Chain Reaction.
    Zhang Y; Wang D; Yue S; Lu Y; Yang C; Fang J; Xu Z
    ACS Sens; 2019 Dec; 4(12):3210-3218. PubMed ID: 31820935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A highly sensitive colorimetric sensing platform based on silver nanocomposites for alkaline phosphatase.
    Wang WF; Nsanzamahoro S; Zhang Y; Wang CB; Shi YP; Yang JL
    Anal Methods; 2022 Jun; 14(24):2431-2438. PubMed ID: 35678556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorometric and resonance Rayleigh scattering dual-mode bioprobe for determination of the activity of alkaline phosphatase based on the use of CoOOH nanoflakes and cobalt(II)-dependent DNAzyme-assisted amplification.
    Zhou J; Ling Y; Li NB; Luo HQ
    Mikrochim Acta; 2019 Jun; 186(7):437. PubMed ID: 31197585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence quenching based alkaline phosphatase activity detection.
    Mei Y; Hu Q; Zhou B; Zhang Y; He M; Xu T; Li F; Kong J
    Talanta; 2018 Jan; 176():52-58. PubMed ID: 28917785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplification Strategy of Silver Nanoclusters with a Satellite-Nanostructure for Substrate-Free Assay of Alkaline Phosphatase by ICP-MS.
    Liu X; Cheng ZH; Zhang SQ; Wu N; Yang T; Chen ML; Wang JH
    Anal Chem; 2020 Mar; 92(5):3769-3774. PubMed ID: 31931569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A point-of-care solid-phase colorimetric sensor based on the enzyme-induced metallization for ALP detection.
    Ma BL; Zhang ZL
    Talanta; 2024 Feb; 268(Pt 1):125365. PubMed ID: 37918249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid.
    Rostami S; Mehdinia A; Jabbari A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 180():204-210. PubMed ID: 28292703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen-doped carbon dots-V
    Zhu R; Huang W; Ma X; Zhang Y; Yue C; Fang W; Hu Y; Wang J; Dang J; Zhao H; Li Z
    Anal Chim Acta; 2019 Dec; 1089():131-143. PubMed ID: 31627810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ encapsulation of SQDs by zinc ion-induced ZIF-8 growth strategy for fluorescent and colorimetric dual-signal detection of alkaline phosphatase.
    Jiang XX; Li P; Zhao MY; Chen RC; Wang ZG; Xie JX; Lv YK
    Anal Chim Acta; 2022 Aug; 1221():340103. PubMed ID: 35934395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vivo Near-Infrared Fluorescence and Photoacoustic Dual-Modal Imaging of Endogenous Alkaline Phosphatase.
    Gao X; Ma G; Jiang C; Zeng L; Jiang S; Huang P; Lin J
    Anal Chem; 2019 Jun; 91(11):7112-7117. PubMed ID: 31088079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-deposited ultrasmall Ru nanoparticles on carbon nitride with high peroxidase-mimicking activity for the colorimetric detection of alkaline phosphatase.
    Ding Z; Li Z; Zhao X; Miao Y; Yuan Z; Jiang Y; Lu Y
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):86-95. PubMed ID: 36368217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular structure regulation and enzyme cascade signal amplification strategy for upconversion ratiometric luminescent and colorimetric alkaline phosphatase detection.
    Chen H; Zhou Z; Lu Q; Wu C; Liu M; Zhang Y; Yao S
    Anal Chim Acta; 2019 Mar; 1051():160-168. PubMed ID: 30661613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile colorimetric detection of alkaline phosphatase activity based on the target-induced valence state regulation of oxidase-mimicking Ce-based nanorods.
    Song H; Ye K; Peng Y; Wang L; Niu X
    J Mater Chem B; 2019 Oct; 7(38):5834-5841. PubMed ID: 31497839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-enhanced Raman scattering for immunoassay based on the biocatalytic production of silver nanoparticles.
    Chen J; Luo Y; Liang Y; Jiang J; Shen G; Yu R
    Anal Sci; 2009 Mar; 25(3):347-52. PubMed ID: 19276589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing background absorbance via a double-lock strategy for detection of alkaline phosphatase and α-fetoprotein.
    Hu X; Wei Z; Tang M; Long Y; Zheng H
    Mikrochim Acta; 2020 Aug; 187(9):489. PubMed ID: 32766932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fe-N hollow mesoporous carbon spheres with high oxidase-like activity for sensitive detection of alkaline phosphatase.
    Chen Y; Zhao L; Zhang B; Guan Y; Yao C; Xu X
    Analyst; 2023 Jun; 148(12):2825-2833. PubMed ID: 37227369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.