BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32222246)

  • 1. Fabrication of immobilized enzyme reactors with pillar arrays into polydimethylsiloxane microchip.
    Nagy C; Kecskemeti A; Gaspar A
    Anal Chim Acta; 2020 Apr; 1108():70-78. PubMed ID: 32222246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device.
    Kecskemeti A; Bako J; Csarnovics I; Csosz E; Gaspar A
    Anal Bioanal Chem; 2017 May; 409(14):3573-3585. PubMed ID: 28299417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of a microfluidic reactor including spontaneously adsorbed trypsin for rapid protein digestion of human tear samples.
    Kecskemeti A; Nagy C; Csosz E; Kallo G; Gaspar A
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 28688207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein.
    Wei Z; Fan P; Jiao Y; Wang Y; Huang Y; Liu Z
    Anal Chim Acta; 2020 Mar; 1102():1-10. PubMed ID: 32043988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the geometry of open channels in a layer-bed-type microfluidic immobilized enzyme reactor.
    Nagy C; Huszank R; Gaspar A
    Anal Bioanal Chem; 2021 Oct; 413(25):6321-6332. PubMed ID: 34378068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.
    Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y
    J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.
    Zhang P; Gao M; Zhu S; Lei J; Zhang X
    J Chromatogr A; 2011 Nov; 1218(47):8567-71. PubMed ID: 22024345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an In-Line Enzyme Reactor Integrated into a Capillary Electrophoresis System.
    Nagy C; Szabo R; Gaspar A
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-based immobilized enzymatic reactors in microfluidic chips.
    Kecskemeti A; Gaspar A
    Talanta; 2018 Apr; 180():211-228. PubMed ID: 29332803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-lumen capillary based trypsin micro-reactor for the rapid digestion of proteins.
    Currivan SA; Chen WQ; Wilson R; Sanz Rodriguez E; Upadhyay N; Connolly D; Nesterenko PN; Paull B
    Analyst; 2018 Oct; 143(20):4944-4953. PubMed ID: 30221288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein.
    Perchepied S; Eskenazi N; Giangrande C; Camperi J; Fournier T; Vinh J; Delaunay N; Pichon V
    Talanta; 2020 Jan; 206():120171. PubMed ID: 31514875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y
    Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: effect of calcium ions on the immobilization procedure.
    Dartiguenave C; Hamad H; Waldron KC
    Anal Chim Acta; 2010 Mar; 663(2):198-205. PubMed ID: 20206011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y
    J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an immobilized-trypsin reactor coupled to liquid chromatography and tandem mass spectrometry for the analysis of human hemoglobin adducts with sulfur mustard.
    Hallez F; Combès A; Desoubries C; Bossée A; Pichon V
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Dec; 1186():123031. PubMed ID: 34781109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.