These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32222475)
21. A nanoplatform with tumor-targeted aggregation and drug-specific release characteristics for photodynamic/photothermal combined antitumor therapy under near-infrared laser irradiation. Xie M; Zhu Y; Xu S; Xu G; Xiong R; Sun X; Liu C Nanoscale; 2020 Jun; 12(21):11497-11509. PubMed ID: 32427255 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of redox-responsive magnetic protein microcapsules from hen egg white by the sonochemical method. Zhong S; Cui X; Tian F J Microencapsul; 2015; 32(7):705-10. PubMed ID: 26300460 [TBL] [Abstract][Full Text] [Related]
23. Magnetically responsive layer-by-layer microcapsules can be retained in cells and under flow conditions to promote local drug release without triggering ROS production. Read JE; Luo D; Chowdhury TT; Flower RJ; Poston RN; Sukhorukov GB; Gould DJ Nanoscale; 2020 Apr; 12(14):7735-7748. PubMed ID: 32211625 [TBL] [Abstract][Full Text] [Related]
24. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Agwa MM; Sabra S Int J Biol Macromol; 2021 Jan; 167():1527-1543. PubMed ID: 33212102 [TBL] [Abstract][Full Text] [Related]
25. Tailoring layer-by-layer capsules for biomedical applications. De Temmerman ML; Demeester J; De Smedt SC; Rejman J Nanomedicine (Lond); 2012 May; 7(5):771-88. PubMed ID: 22630156 [TBL] [Abstract][Full Text] [Related]
26. Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Patitsa M; Karathanou K; Kanaki Z; Tzioga L; Pippa N; Demetzos C; Verganelakis DA; Cournia Z; Klinakis A Sci Rep; 2017 Apr; 7(1):775. PubMed ID: 28396592 [TBL] [Abstract][Full Text] [Related]
27. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. de Toledo LAS; Rosseto HC; Bruschi ML Pharm Dev Technol; 2018 Apr; 23(4):316-323. PubMed ID: 28565928 [TBL] [Abstract][Full Text] [Related]
28. In situ synthesis and characterization of magnetic nanoparticles in shells of biodegradable polyelectrolyte microcapsules. Lyubutin IS; Starchikov SS; Bukreeva TV; Lysenko IA; Sulyanov SN; Korotkov NY; Rumyantseva SS; Marchenko IV; Funtov KO; Vasiliev AL Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():225-33. PubMed ID: 25491824 [TBL] [Abstract][Full Text] [Related]
29. Magnetic nanoparticles in nanomedicine: a review of recent advances. Wu K; Su D; Liu J; Saha R; Wang JP Nanotechnology; 2019 Dec; 30(50):502003. PubMed ID: 31491782 [TBL] [Abstract][Full Text] [Related]
30. Magnetite: from synthesis to applications. Unsoy G; Gunduz U; Oprea O; Ficai D; Sonmez M; Radulescu M; Alexie M; Ficai A Curr Top Med Chem; 2015; 15(16):1622-40. PubMed ID: 25877083 [TBL] [Abstract][Full Text] [Related]
31. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. Adams CF; Rai A; Sneddon G; Yiu HH; Polyak B; Chari DM Nanomedicine; 2015 Jan; 11(1):19-29. PubMed ID: 25038496 [TBL] [Abstract][Full Text] [Related]
32. Side effects-avoided theranostics achieved by biodegradable magnetic silica-sealed mesoporous polymer-drug with ultralow leakage. Li C; Wang Y; Du Y; Qian M; Jiang H; Wang J; Murthy N; Huang R Biomaterials; 2018 Dec; 186():1-7. PubMed ID: 30273749 [TBL] [Abstract][Full Text] [Related]
33. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Al Faraj A; Shaik AP; Shaik AS Int J Nanomedicine; 2015; 10():157-68. PubMed ID: 25565811 [TBL] [Abstract][Full Text] [Related]
34. Toward therapeutic delivery with layer-by-layer engineered particles. Yan Y; Such GK; Johnston AP; Lomas H; Caruso F ACS Nano; 2011 Jun; 5(6):4252-7. PubMed ID: 21612259 [TBL] [Abstract][Full Text] [Related]
35. Drug targeting systems for cancer therapy: nanotechnological approach. Tigli Aydin RS Mini Rev Med Chem; 2015; 14(13):1048-54. PubMed ID: 25138089 [TBL] [Abstract][Full Text] [Related]
36. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo. Wu M; Wang Q; Zhang D; Liao N; Wu L; Huang A; Liu X Colloids Surf B Biointerfaces; 2016 May; 141():467-475. PubMed ID: 26896652 [TBL] [Abstract][Full Text] [Related]
37. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Taratula O; Dani RK; Schumann C; Xu H; Wang A; Song H; Dhagat P; Taratula O Int J Pharm; 2013 Dec; 458(1):169-80. PubMed ID: 24091153 [TBL] [Abstract][Full Text] [Related]
38. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Amiri M; Salavati-Niasari M; Akbari A Adv Colloid Interface Sci; 2019 Mar; 265():29-44. PubMed ID: 30711796 [TBL] [Abstract][Full Text] [Related]
39. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Kempe M; Kempe H; Snowball I; Wallén R; Arza CR; Götberg M; Olsson T Biomaterials; 2010 Dec; 31(36):9499-510. PubMed ID: 20732712 [TBL] [Abstract][Full Text] [Related]
40. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Liu JF; Jang B; Issadore D; Tsourkas A Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1571. PubMed ID: 31241251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]