BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32222486)

  • 1. Precise Modifications of Both Exogenous and Endogenous Genes in Rice by Prime Editing.
    Li H; Li J; Chen J; Yan L; Xia L
    Mol Plant; 2020 May; 13(5):671-674. PubMed ID: 32222486
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeted G-to-T base editing for generation of novel herbicide-resistance gene alleles in rice.
    Tian Y; Li X; Xie J; Zheng Z; Shen R; Cao X; Wang M; Dong C; Zhu JK
    J Integr Plant Biol; 2024 Jun; 66(6):1048-1051. PubMed ID: 38578176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shaping rice Green Revolution traits by engineering ATG immediate upstream 5'-UTR sequences of OsSBI and OsHTD1.
    Wang H; Chen M; Zhang D; Meng X; Yan J; Chu J; Li J; Yu H
    Plant Biotechnol J; 2024 Mar; 22(3):532-534. PubMed ID: 37996983
    [No Abstract]   [Full Text] [Related]  

  • 4. Prime genome editing in rice and wheat.
    Lin Q; Zong Y; Xue C; Wang S; Jin S; Zhu Z; Wang Y; Anzalone AV; Raguram A; Doman JL; Liu DR; Gao C
    Nat Biotechnol; 2020 May; 38(5):582-585. PubMed ID: 32393904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Prime Editors Enable Precise Gene Editing in Rice Cells.
    Tang X; Sretenovic S; Ren Q; Jia X; Li M; Fan T; Yin D; Xiang S; Guo Y; Liu L; Zheng X; Qi Y; Zhang Y
    Mol Plant; 2020 May; 13(5):667-670. PubMed ID: 32222487
    [No Abstract]   [Full Text] [Related]  

  • 6. Versatile Nucleotides Substitution in Plant Using an Improved Prime Editing System.
    Xu W; Zhang C; Yang Y; Zhao S; Kang G; He X; Song J; Yang J
    Mol Plant; 2020 May; 13(5):675-678. PubMed ID: 32234340
    [No Abstract]   [Full Text] [Related]  

  • 7. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize.
    Jiang YY; Chai YP; Lu MH; Han XL; Lin Q; Zhang Y; Zhang Q; Zhou Y; Wang XC; Gao C; Chen QJ
    Genome Biol; 2020 Oct; 21(1):257. PubMed ID: 33023639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision genome engineering in rice using prime editing system.
    Hua K; Jiang Y; Tao X; Zhu JK
    Plant Biotechnol J; 2020 Nov; 18(11):2167-2169. PubMed ID: 32372479
    [No Abstract]   [Full Text] [Related]  

  • 9. Engineering herbicide resistance via prime editing in rice.
    Butt H; Rao GS; Sedeek K; Aman R; Kamel R; Mahfouz M
    Plant Biotechnol J; 2020 Dec; 18(12):2370-2372. PubMed ID: 32415890
    [No Abstract]   [Full Text] [Related]  

  • 10. Precise genome modification in tomato using an improved prime editing system.
    Lu Y; Tian Y; Shen R; Yao Q; Zhong D; Zhang X; Zhu JK
    Plant Biotechnol J; 2021 Mar; 19(3):415-417. PubMed ID: 33091225
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of Plant Prime-Editing Systems for Precise Genome Editing.
    Xu R; Li J; Liu X; Shan T; Qin R; Wei P
    Plant Commun; 2020 May; 1(3):100043. PubMed ID: 33367239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
    Anzalone AV; Koblan LW; Liu DR
    Nat Biotechnol; 2020 Jul; 38(7):824-844. PubMed ID: 32572269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the efficiency of prime editing guide RNAs in human cells.
    Kim HK; Yu G; Park J; Min S; Lee S; Yoon S; Kim HH
    Nat Biotechnol; 2021 Feb; 39(2):198-206. PubMed ID: 32958957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of CRISPR-Cas in agriculture and plant biotechnology.
    Zhu H; Li C; Gao C
    Nat Rev Mol Cell Biol; 2020 Nov; 21(11):661-677. PubMed ID: 32973356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prime editing for functional repair in patient-derived disease models.
    Schene IF; Joore IP; Oka R; Mokry M; van Vugt AHM; van Boxtel R; van der Doef HPJ; van der Laan LJW; Verstegen MMA; van Hasselt PM; Nieuwenhuis EES; Fuchs SA
    Nat Commun; 2020 Oct; 11(1):5352. PubMed ID: 33097693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency prime editing with optimized, paired pegRNAs in plants.
    Lin Q; Jin S; Zong Y; Yu H; Zhu Z; Liu G; Kou L; Wang Y; Qiu JL; Li J; Gao C
    Nat Biotechnol; 2021 Aug; 39(8):923-927. PubMed ID: 33767395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors.
    Sürün D; Schneider A; Mircetic J; Neumann K; Lansing F; Paszkowski-Rogacz M; Hänchen V; Lee-Kirsch MA; Buchholz F
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32384610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome engineering for crop improvement and future agriculture.
    Gao C
    Cell; 2021 Mar; 184(6):1621-1635. PubMed ID: 33581057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prime Editing Guide RNA Design Automation Using PINE-CONE.
    Standage-Beier K; Tekel SJ; Brafman DA; Wang X
    ACS Synth Biol; 2021 Feb; 10(2):422-427. PubMed ID: 33464043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A web tool for the design of prime-editing guide RNAs.
    Chow RD; Chen JS; Shen J; Chen S
    Nat Biomed Eng; 2021 Feb; 5(2):190-194. PubMed ID: 32989284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.