BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32222515)

  • 1. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025.
    Song C; Liu Z; Wang C; Li S; Kitamura Y
    Sci Total Environ; 2020 Jun; 723():138146. PubMed ID: 32222515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Mechanism of Sulfadimethoxine Biodegradation by
    Li B; Wu D; Li Y; Shi Y; Wang C; Sun J; Song C
    Front Microbiol; 2022; 13():840562. PubMed ID: 35369425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential physiological response of marine and freshwater microalgae to polystyrene microplastics.
    Xu H; Li L; Wang Y; Qiu K; Chen S; Zeng J; Liu R; Yang Q; Huang W
    J Hazard Mater; 2023 Apr; 448():130814. PubMed ID: 36706485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polystyrene microplastic on the growth and volatile halocarbons release of microalgae Phaeodactylum tricornutum.
    Lang X; Ni J; He Z
    Mar Pollut Bull; 2022 Jan; 174():113197. PubMed ID: 34875478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa.
    Yang W; Gao P; Li H; Huang J; Zhang Y; Ding H; Zhang W
    Sci Total Environ; 2021 Aug; 783():146919. PubMed ID: 33866172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study.
    Song C; Wei Y; Qiu Y; Qi Y; Li Y; Kitamura Y
    Bioresour Technol; 2019 Jan; 272():529-534. PubMed ID: 30391846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris.
    Luo H; Xiang Y; He D; Li Y; Zhao Y; Wang S; Pan X
    Sci Total Environ; 2019 Aug; 678():1-9. PubMed ID: 31075575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum.
    Guo Y; Ma W; Li J; Liu W; Qi P; Ye Y; Guo B; Zhang J; Qu C
    Environ Pollut; 2020 Feb; 257():113628. PubMed ID: 31771928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38.
    Song C; Wei Y; Sun J; Song Y; Li S; Kitamura Y
    Bioresour Technol; 2020 Jan; 296():122320. PubMed ID: 31678704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum.
    Zhu ZL; Wang SC; Zhao FF; Wang SG; Liu FF; Liu GZ
    Environ Pollut; 2019 Mar; 246():509-517. PubMed ID: 30583159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unmasking effects of masks: Microplastics released from disposable surgical face masks induce toxic effects in microalgae Scenedesmus obliquus and Chlorella sp.
    Das S; Chandrasekaran N; Mukherjee A
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 May; 267():109587. PubMed ID: 36858140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa.
    Yang W; Gao X; Wu Y; Wan L; Tan L; Yuan S; Ding H; Zhang W
    Ecotoxicol Environ Saf; 2020 Jun; 195():110484. PubMed ID: 32200150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris.
    Tunali M; Uzoefuna EN; Tunali MM; Yenigun O
    Sci Total Environ; 2020 Nov; 743():140479. PubMed ID: 32653702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interactions between microplastic polyvinyl chloride and marine diatoms: Physiological, morphological, and growth effects.
    Wang S; Wang Y; Liang Y; Cao W; Sun C; Ju P; Zheng L
    Ecotoxicol Environ Saf; 2020 Oct; 203():111000. PubMed ID: 32736119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological responses and altered halocarbon production in Phaeodactylum tricornutum after exposure to polystyrene microplastics.
    Lang XP; He Z; Yang GP; Dai G
    Ecotoxicol Environ Saf; 2023 Dec; 268():115702. PubMed ID: 37979361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris.
    Fu D; Zhang Q; Fan Z; Qi H; Wang Z; Peng L
    Aquat Toxicol; 2019 Nov; 216():105319. PubMed ID: 31586885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa.
    Li Z; Yi X; Zhou H; Chi T; Li W; Yang K
    Environ Pollut; 2020 Feb; 257():113604. PubMed ID: 31761578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO
    Thiagarajan V; Iswarya V; P AJ; Seenivasan R; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2019 Feb; 207():208-216. PubMed ID: 30638491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture.
    Grivalský T; Střížek A; Přibyl P; Lukavský J; Čegan R; Hobza R; Hrouzek P
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5189-5200. PubMed ID: 34146137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emulsifying properties of water-soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodactylum tricornutum.
    Ebert S; Grossmann L; Hinrichs J; Weiss J
    Food Funct; 2019 Feb; 10(2):754-764. PubMed ID: 30667441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.