BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 32222664)

  • 1. Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments.
    Zhu C; Kanaya Y; Nakajima R; Tsuchiya M; Nomaki H; Kitahashi T; Fujikura K
    Environ Pollut; 2020 Aug; 263(Pt B):114296. PubMed ID: 32222664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of robust models for rapid classification of microplastic polymer types based on near infrared hyperspectral images.
    Kitahashi T; Nakajima R; Nomaki H; Tsuchiya M; Yabuki A; Yamaguchi S; Zhu C; Kanaya Y; Lindsay DJ; Chiba S; Fujikura K
    Anal Methods; 2021 May; 13(19):2215-2222. PubMed ID: 33908466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics.
    Vidal C; Pasquini C
    Environ Pollut; 2021 Sep; 285():117251. PubMed ID: 33957518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method.
    Piarulli S; Sciutto G; Oliveri P; Malegori C; Prati S; Mazzeo R; Airoldi L
    Chemosphere; 2020 Dec; 260():127655. PubMed ID: 32688326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification and distribution of freshwater microplastics along the Italian Po river by hyperspectral imaging.
    Fiore L; Serranti S; Mazziotti C; Riccardi E; Benzi M; Bonifazi G
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48588-48606. PubMed ID: 35195863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study.
    Nigamatzyanova L; Fakhrullin R
    Environ Pollut; 2021 Feb; 271():116337. PubMed ID: 33383415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effective strategy for the monitoring of microplastics in complex aquatic matrices: Exploiting the potential of near infrared hyperspectral imaging (NIR-HSI).
    Piarulli S; Malegori C; Grasselli F; Airoldi L; Prati S; Mazzeo R; Sciutto G; Oliveri P
    Chemosphere; 2022 Jan; 286(Pt 3):131861. PubMed ID: 34399269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water.
    Schymanski D; Goldbeck C; Humpf HU; Fürst P
    Water Res; 2018 Feb; 129():154-162. PubMed ID: 29145085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing and testing a workflow to identify microplastics using near infrared hyperspectral imaging.
    Faltynkova A; Wagner M
    Chemosphere; 2023 Sep; 336():139186. PubMed ID: 37354961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastics in sea-surface waters surrounding Sweden sampled by manta trawl and in-situ pump.
    Schönlau C; Karlsson TM; Rotander A; Nilsson H; Engwall M; van Bavel B; Kärrman A
    Mar Pollut Bull; 2020 Apr; 153():111019. PubMed ID: 32275565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction and detection methods of microplastics in food and marine systems: A critical review.
    Sridhar A; Kannan D; Kapoor A; Prabhakar S
    Chemosphere; 2022 Jan; 286(Pt 1):131653. PubMed ID: 34346338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence, distribution and composition of microplastics in the sediments of South Andaman beaches.
    Patchaiyappan A; Ahmed SZ; Dowarah K; Jayakumar S; Devipriya SP
    Mar Pollut Bull; 2020 Jul; 156():111227. PubMed ID: 32510373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-detection of microplastics using active thermography.
    Kedzierski M; Geslain E; Pedrotti ML; Ghiglione JF; Bruzaud S
    Chemosphere; 2021 Jan; 262():127648. PubMed ID: 32771705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral imaging for characterization and detection of plastic substances in branded teabags.
    Xu JL; Lin X; Hugelier S; Herrero-Langreo A; Gowen AA
    J Hazard Mater; 2021 Sep; 418():126328. PubMed ID: 34118538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol.
    Vermeiren P; Muñoz C; Ikejima K
    Environ Pollut; 2020 Jul; 262():114298. PubMed ID: 32163807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel print-and-release method to prepare microplastics using an office-grade laserjet printer; a low-cost solution for preliminary studies.
    Bamshad A; Cho HJ
    Mar Pollut Bull; 2021 Sep; 170():112601. PubMed ID: 34126439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leachability of microplastic from different plastic materials.
    Mortula MM; Atabay S; Fattah KP; Madbuly A
    J Environ Manage; 2021 Sep; 294():112995. PubMed ID: 34126529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake.
    Uurasjärvi E; Hartikainen S; Setälä O; Lehtiniemi M; Koistinen A
    Water Environ Res; 2020 Jan; 92(1):149-156. PubMed ID: 31469932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman Spectral Imaging for the Detection of Inhalable Microplastics in Ambient Particulate Matter Samples.
    Wright SL; Levermore JM; Kelly FJ
    Environ Sci Technol; 2019 Aug; 53(15):8947-8956. PubMed ID: 31293159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microplastic quantification affected by structure and pore size of filters.
    Cai H; Chen M; Chen Q; Du F; Liu J; Shi H
    Chemosphere; 2020 Oct; 257():127198. PubMed ID: 32512329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.