These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 32222692)
1. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. García-Depraect O; Muñoz R; van Lier JB; Rene ER; Diaz-Cruces VF; León-Becerril E Bioresour Technol; 2020 Jul; 307():123160. PubMed ID: 32222692 [TBL] [Abstract][Full Text] [Related]
2. Lactate- and acetate-based biohydrogen production through dark co-fermentation of tequila vinasse and nixtamalization wastewater: Metabolic and microbial community dynamics. García-Depraect O; Valdez-Vázquez I; Rene ER; Gómez-Romero J; López-López A; León-Becerril E Bioresour Technol; 2019 Jun; 282():236-244. PubMed ID: 30870689 [TBL] [Abstract][Full Text] [Related]
3. Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway. García-Depraect O; Rene ER; Diaz-Cruces VF; León-Becerril E Bioresour Technol; 2019 Feb; 273():618-626. PubMed ID: 30497061 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen production from tequila vinasses using a fixed bed reactor. Buitrón G; Prato-Garcia D; Zhang A Water Sci Technol; 2014; 70(12):1919-25. PubMed ID: 25521125 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. Two-Stage and One-Stage Anaerobic Co-digestion of Vinasse and Spent Brewer Yeast Cells for Biohydrogen and Methane Production. Nualsri C; Abdul PM; Imai T; Reungsang A; Sittijunda S Mol Biotechnol; 2024 Jan; ():. PubMed ID: 38231316 [TBL] [Abstract][Full Text] [Related]
7. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Farhat A; Miladi B; Hamdi M; Bouallagui H Environ Sci Pollut Res Int; 2018 Oct; 25(28):27945-27958. PubMed ID: 30058041 [TBL] [Abstract][Full Text] [Related]
8. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981 [TBL] [Abstract][Full Text] [Related]
9. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses. López-López A; León-Becerril E; Rosales-Contreras ME; Villegas-García E Environ Technol; 2015; 36(19):2468-76. PubMed ID: 25827467 [TBL] [Abstract][Full Text] [Related]
10. Co-production of biohydrogen and biomethane utilizing halophytic biomass Nawaz A; Aamir F; Huang R; Haq IU; Wu F; Munir M; Chaudhary R; Rafique A; Jiang K Front Chem; 2023; 11():1233494. PubMed ID: 37483269 [TBL] [Abstract][Full Text] [Related]
11. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Buitrón G; Carvajal C Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747 [TBL] [Abstract][Full Text] [Related]
13. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
14. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Fuess LT; Zaiat M; do Nascimento CAO Bioresour Technol; 2019 Aug; 286():121379. PubMed ID: 31051398 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Koutrouli EC; Kalfas H; Gavala HN; Skiadas IV; Stamatelatou K; Lyberatos G Bioresour Technol; 2009 Aug; 100(15):3718-23. PubMed ID: 19246194 [TBL] [Abstract][Full Text] [Related]
16. One versus two-stage codigestion of sugarcane vinasse and glycerol: Assessing combinations at mesophilic and (hyper) thermophilic conditions. Menezes CA; Almeida PS; Camargo FP; Delforno TP; Oliveira VM; Sakamoto IK; Varesche MBA; Silva EL Sci Total Environ; 2023 Dec; 904():166294. PubMed ID: 37586502 [TBL] [Abstract][Full Text] [Related]
17. Enhanced bioenergy recovery from oil-extracted microalgae residues via two-step H2/CH4 or H2/butanol anaerobic fermentation. Cheng HH; Whang LM; Wu SH Biotechnol J; 2016 Mar; 11(3):375-83. PubMed ID: 26663890 [TBL] [Abstract][Full Text] [Related]
18. Temporal dynamics and metabolic correlation between lactate-producing and hydrogen-producing bacteria in sugarcane vinasse dark fermentation: The key role of lactate. Fuess LT; Ferraz ADN; Machado CB; Zaiat M Bioresour Technol; 2018 Jan; 247():426-433. PubMed ID: 28965073 [TBL] [Abstract][Full Text] [Related]
19. Changes in performance and bacterial communities in a continuous biohydrogen-producing reactor subjected to substrate- and pH-induced perturbations. García-Depraect O; Diaz-Cruces VF; Rene ER; León-Becerril E Bioresour Technol; 2020 Jan; 295():122182. PubMed ID: 31623922 [TBL] [Abstract][Full Text] [Related]
20. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation. Jung KW; Moon C; Cho SK; Kim SH; Shin HS; Kim DH Bioresour Technol; 2013 Jul; 139():120-7. PubMed ID: 23648761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]