These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32222750)

  • 1. Exploring the reaction mechanism of ethanol synthesis from acetic acid over a Ni
    Chen Y; Zhai Z; Liu J; Zhang J; Geng Z; Lyu H
    Phys Chem Chem Phys; 2020 Apr; 22(14):7564-7576. PubMed ID: 32222750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the mechanism of ethanol synthesis and ethyl acetate inhibition from acetic acid hydrogenation over Cu
    Liu J; Lyu H; Chen Y; Li G; Jiang H; Zhang M
    Phys Chem Chem Phys; 2017 Oct; 19(41):28083-28097. PubMed ID: 28994834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergistic effects of Cu clusters and In
    Chen Y; Zhai Z; Liu J; Zhang J; Geng Z; Lyu H
    Phys Chem Chem Phys; 2019 Nov; 21(43):23906-23915. PubMed ID: 31657393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface oxygen vacancy sites on ethanol synthesis from acetic acid hydrogenation on a defective In
    Lyu H; Liu J; Chen Y; Li G; Jiang H; Zhang M
    Phys Chem Chem Phys; 2018 Mar; 20(10):7156-7166. PubMed ID: 29479593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of C
    Ling L; Wang Q; Zhang R; Li D; Wang B
    Phys Chem Chem Phys; 2017 Nov; 19(45):30883-30894. PubMed ID: 29134992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation mechanism of the initial C-C chain in ethanol synthesis on γ-AlOOH(100).
    Zhang L; Bai B; Bai H; Huang W; Gao ZH; Zuo ZJ; Lv YK
    Phys Chem Chem Phys; 2017 Jul; 19(29):19300-19307. PubMed ID: 28702626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A density functional theory study of hydrocarbon combustion and synthesis on Ni surfaces.
    Mohsenzadeh A; Richards T; Bolton K
    J Mol Model; 2015 Mar; 21(3):46. PubMed ID: 25690364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.
    Sawatlon B; Wititsuwannakul T; Tantirungrotechai Y; Surawatanawong P
    Dalton Trans; 2014 Dec; 43(48):18123-33. PubMed ID: 25355042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of oxide supports in stabilizing desirable Pt-Ni bimetallic structures for hydrogenation and reforming reactions.
    Wang T; Mpourmpakis G; Lonergan WW; Vlachos DG; Chen JG
    Phys Chem Chem Phys; 2013 Aug; 15(29):12156-64. PubMed ID: 23689424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylic acid reduction over silica supported Cu, Ni and Cu2In, Ni2In catalysts.
    Onyestyák G; Harnos S
    Acta Chim Slov; 2014; 61(4):819-26. PubMed ID: 25551722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of ethanol synthesis from syngas on Rh(111).
    Choi Y; Liu P
    J Am Chem Soc; 2009 Sep; 131(36):13054-61. PubMed ID: 19702298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic hydrogenation of CO
    Esrafili MD; Sharifi F; Dinparast L
    J Mol Graph Model; 2017 Oct; 77():143-152. PubMed ID: 28858642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment.
    Wu Z; Zhang M; Jiang H; Zhong CJ; Chen Y; Wang L
    Phys Chem Chem Phys; 2017 Jun; 19(23):15444-15453. PubMed ID: 28580983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monodisperse ordered indium-palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction.
    Chen YJ; Chen YR; Chiang CH; Tung KL; Yeh TK; Tuan HY
    Nanoscale; 2019 Feb; 11(7):3336-3343. PubMed ID: 30724949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction mechanism and selectivity of acetylene hydrogenation over Ni-Ga intermetallic compound catalysts: a density functional theory study.
    Rao DM; Zhang ST; Li CM; Chen YD; Pu M; Yan H; Wei M
    Dalton Trans; 2018 Mar; 47(12):4198-4208. PubMed ID: 29479598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts.
    Alcala R; Shabaker JW; Huber GW; Sanchez-Castillo MA; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(6):2074-85. PubMed ID: 16851198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al
    Bai B; Bai H; Cao HJ; Gao ZH; Zuo ZJ; Huang W
    Phys Chem Chem Phys; 2018 May; 20(18):12845-12857. PubMed ID: 29700517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni-Ag Bimetallic Magnetic Catalyst Improves the Performance of the Catalytic Transfer Hydrogenated Soybean Oil.
    Yu D; Li T; Chen J; Yu C; Wu N; Liu T; Wang L
    J Oleo Sci; 2019 Jul; 68(7):615-623. PubMed ID: 31178461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.