BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 32222809)

  • 1. CTumorGAN: a unified framework for automatic computed tomography tumor segmentation.
    Pang S; Du A; Orgun MA; Yu Z; Wang Y; Wang Y; Liu G
    Eur J Nucl Med Mol Imaging; 2020 Sep; 47(10):2248-2268. PubMed ID: 32222809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary nodule segmentation with CT sample synthesis using adversarial networks.
    Qin Y; Zheng H; Huang X; Yang J; Zhu YM
    Med Phys; 2019 Mar; 46(3):1218-1229. PubMed ID: 30575046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LGAN: Lung segmentation in CT scans using generative adversarial network.
    Tan J; Jing L; Huo Y; Li L; Akin O; Tian Y
    Comput Med Imaging Graph; 2021 Jan; 87():101817. PubMed ID: 33278767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.
    Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J
    Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network.
    Liu X; Guo S; Zhang H; He K; Mu S; Guo Y; Li X
    Med Phys; 2019 Aug; 46(8):3532-3542. PubMed ID: 31087327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Modal Brain Tumor Data Completion Based on Reconstruction Consistency Loss.
    Jiang Y; Zhang S; Chi J
    J Digit Imaging; 2023 Aug; 36(4):1794-1807. PubMed ID: 36856903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative multi-adversarial network for striking the right balance in abdominal image segmentation.
    Rezaei M; Näppi JJ; Lippert C; Meinel C; Yoshida H
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1847-1858. PubMed ID: 32897490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnU-Net.
    Zhang G; Yang Z; Huo B; Chai S; Jiang S
    Comput Methods Programs Biomed; 2021 Nov; 211():106419. PubMed ID: 34563895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin lesion segmentation via generative adversarial networks with dual discriminators.
    Lei B; Xia Z; Jiang F; Jiang X; Ge Z; Xu Y; Qin J; Chen S; Wang T; Wang S
    Med Image Anal; 2020 Aug; 64():101716. PubMed ID: 32492581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.
    Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R
    Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images.
    Zhang B; Qi S; Wu Y; Pan X; Yao Y; Qian W; Guan Y
    Comput Methods Programs Biomed; 2022 Jul; 222():106946. PubMed ID: 35716533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAP-cGAN: Adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling.
    Li Y; Zhao G; Zhang Q; Lin Y; Wang M
    Med Phys; 2021 Mar; 48(3):1157-1167. PubMed ID: 33340125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning From Synthetic CT Images via Test-Time Training for Liver Tumor Segmentation.
    Lyu F; Ye M; Ma AJ; Yip TC; Wong GL; Yuen PC
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2510-2520. PubMed ID: 35404812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SegAN: Adversarial Network with Multi-scale L
    Xue Y; Xu T; Zhang H; Long LR; Huang X
    Neuroinformatics; 2018 Oct; 16(3-4):383-392. PubMed ID: 29725916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.