BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 32222809)

  • 21. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Automatic three-dimensional segmentation of liver and tumors regions based on conditional generative adversarial networks].
    Zhang Z; Li B; Xu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Feb; 38(1):80-88. PubMed ID: 33899431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liver tumor segmentation in CT volumes using an adversarial densely connected network.
    Chen L; Song H; Wang C; Cui Y; Yang J; Hu X; Zhang L
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):587. PubMed ID: 31787071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks.
    Conze PH; Kavur AE; Cornec-Le Gall E; Gezer NS; Le Meur Y; Selver MA; Rousseau F
    Artif Intell Med; 2021 Jul; 117():102109. PubMed ID: 34127239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unsupervised X-ray image segmentation with task driven generative adversarial networks.
    Zhang Y; Miao S; Mansi T; Liao R
    Med Image Anal; 2020 May; 62():101664. PubMed ID: 32120268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging.
    Qayyum A; Lalande A; Meriaudeau F
    Comput Biol Med; 2020 Dec; 127():104097. PubMed ID: 33142142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?
    Heilemann G; Matthewman M; Kuess P; Goldner G; Widder J; Georg D; Zimmermann L
    Z Med Phys; 2022 Aug; 32(3):361-368. PubMed ID: 34930685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MetricUNet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling.
    He K; Lian C; Adeli E; Huo J; Gao Y; Zhang B; Zhang J; Shen D
    Med Image Anal; 2021 Jul; 71():102039. PubMed ID: 33831595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A medical unsupervised domain adaptation framework based on Fourier transform image translation and multi-model ensemble self-training strategy.
    Jiang K; Gong T; Quan L
    Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1885-1894. PubMed ID: 37010674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning and level set approach for liver and tumor segmentation from CT scans.
    Alirr OI
    J Appl Clin Med Phys; 2020 Oct; 21(10):200-209. PubMed ID: 33113290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recurrent feature fusion learning for multi-modality pet-ct tumor segmentation.
    Bi L; Fulham M; Li N; Liu Q; Song S; Dagan Feng D; Kim J
    Comput Methods Programs Biomed; 2021 May; 203():106043. PubMed ID: 33744750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PA-Net: A phase attention network fusing venous and arterial phase features of CT images for liver tumor segmentation.
    Liu Z; Hou J; Pan X; Zhang R; Shi Z
    Comput Methods Programs Biomed; 2024 Feb; 244():107997. PubMed ID: 38176329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tumor attention networks: Better feature selection, better tumor segmentation.
    Pang S; Du A; Orgun MA; Wang Y; Yu Z
    Neural Netw; 2021 Aug; 140():203-222. PubMed ID: 33780873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Unified Level Set Framework Combining Hybrid Algorithms for Liver and Liver Tumor Segmentation in CT Images.
    Zheng Z; Zhang X; Xu H; Liang W; Zheng S; Shi Y
    Biomed Res Int; 2018; 2018():3815346. PubMed ID: 30159326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An effective deep network for automatic segmentation of complex lung tumors in CT images.
    Wang B; Chen K; Tian X; Yang Y; Zhang X
    Med Phys; 2021 Sep; 48(9):5004-5016. PubMed ID: 34224147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lumbar Vertebrae Synthetic Segmentation in Computed Tomography Images Using Hybrid Deep Generative Adversarial Networks.
    Malinda V; Lee D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1327-1330. PubMed ID: 33018233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic segmentation of organs-at-risks of nasopharynx cancer and lung cancer by cross-layer attention fusion network with TELD-Loss.
    Liu Z; Sun C; Wang H; Li Z; Gao Y; Lei W; Zhang S; Wang G; Zhang S
    Med Phys; 2021 Nov; 48(11):6987-7002. PubMed ID: 34608652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-scale adversarial learning with difficult region supervision learning models for primary tumor segmentation.
    Zheng S; Sun Q; Ye X; Li W; Yu L; Yang C
    Phys Med Biol; 2024 Apr; 69(8):. PubMed ID: 38471170
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.