BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 32222809)

  • 41. Pancreas segmentation based on an adversarial model under two-tier constraints.
    Li M; Lian F; Guo S
    Phys Med Biol; 2020 Nov; 65(22):225021. PubMed ID: 32906095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator.
    Wu H; Lu X; Lei B; Wen Z
    Med Image Anal; 2021 Feb; 68():101891. PubMed ID: 33260108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation.
    Tyagi S; Talbar SN
    Comput Biol Med; 2022 Aug; 147():105781. PubMed ID: 35777084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework.
    Dot G; Schouman T; Dubois G; Rouch P; Gajny L
    Eur Radiol; 2022 Jun; 32(6):3639-3648. PubMed ID: 35037088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning.
    Wang L; Guo D; Wang G; Zhang S
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2795-2807. PubMed ID: 33370237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation.
    Shi T; Jiang H; Zheng B
    Comput Methods Programs Biomed; 2020 Dec; 197():105678. PubMed ID: 32791449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MSDS-UNet: A multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT.
    Yang J; Wu B; Li L; Cao P; Zaiane O
    Comput Med Imaging Graph; 2021 Sep; 92():101957. PubMed ID: 34325225
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic Lung Nodule Segmentation and Intra-Nodular Heterogeneity Image Generation.
    Song J; Huang SC; Kelly B; Liao G; Shi J; Wu N; Li W; Liu Z; Cui L; Lungre M; Moseley ME; Gao P; Tian J; Yeom KW
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2570-2581. PubMed ID: 34910645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A cGAN-based tumor segmentation method for breast ultrasound images.
    You G; Qin Y; Zhao C; Zhao Y; Zhu K; Yang X; Li YL
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37276866
    [No Abstract]   [Full Text] [Related]  

  • 53. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images.
    Ju W; Xiang D; Zhang B; Wang L; Kopriva I; Chen X
    IEEE Trans Image Process; 2015 Dec; 24(12):5854-67. PubMed ID: 26462198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cross modality fusion for modality-specific lung tumor segmentation in PET-CT images.
    Zhang X; Zhang B; Deng S; Meng Q; Chen X; Xiang D
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36220014
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
    Sebai M; Wang X; Wang T
    Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Region-Based Deep Level Set Formulation for Vertebral Bone Segmentation of Osteoporotic Fractures.
    Rehman F; Ali Shah SI; Riaz MN; Gilani SO; R F
    J Digit Imaging; 2020 Feb; 33(1):191-203. PubMed ID: 31011954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images.
    Yuan W; Wei J; Wang J; Ma Q; Tasdizen T
    Med Image Anal; 2020 Aug; 64():101731. PubMed ID: 32544841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MB-FSGAN: Joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network.
    Ruan Y; Li D; Marshall H; Miao T; Cossetto T; Chan I; Daher O; Accorsi F; Goela A; Li S
    Med Image Anal; 2020 Aug; 64():101721. PubMed ID: 32554169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.