BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 32223029)

  • 21. To predict the niche, model colonization and extinction.
    Yackulc CB; Nichols JD; Reid J; Der R
    Ecology; 2015 Jan; 96(1):16-23. PubMed ID: 26236885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of local rarity and climatic suitability to local extinction and colonization varies with species traits.
    White HJ; Montgomery IW; Lennon JJ
    J Anim Ecol; 2018 Nov; 87(6):1560-1572. PubMed ID: 30007035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Habitat loss and thermal tolerances influence the sensitivity of resident bird populations to winter weather at regional scales.
    Latimer CE; Zuckerberg B
    J Anim Ecol; 2021 Feb; 90(2):317-329. PubMed ID: 32875563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change in our backyards: the reshuffling of North America's winter bird communities.
    Princé K; Zuckerberg B
    Glob Chang Biol; 2015 Feb; 21(2):572-85. PubMed ID: 25322929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts.
    Bothwell HM; Evans LM; Hersch-Green EI; Woolbright SA; Allan GJ; Whitham TG
    Ecol Appl; 2021 Apr; 31(3):e02254. PubMed ID: 33159398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reducing Wallacean shortfalls for the coralsnakes of the Micrurus lemniscatus species complex: Present and future distributions under a changing climate.
    Terribile LC; Feitosa DT; Pires MG; de Almeida PCR; de Oliveira G; Diniz-Filho JAF; Silva NJD
    PLoS One; 2018; 13(11):e0205164. PubMed ID: 30427853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal.
    Billman PD; Beever EA; McWethy DB; Thurman LL; Wilson KC
    Glob Chang Biol; 2021 Oct; 27(19):4498-4515. PubMed ID: 34236759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.
    Xie GY; Olson DH; Blaustein AR
    PLoS One; 2016; 11(8):e0160746. PubMed ID: 27513565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How complex should models be? Comparing correlative and mechanistic range dynamics models.
    Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB
    Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pace of past climate change vs. potential bird distributions and land use in the United States.
    Bateman BL; Pidgeon AM; Radeloff VC; VanDerWal J; Thogmartin WE; Vavrus SJ; Heglund PJ
    Glob Chang Biol; 2016 Mar; 22(3):1130-44. PubMed ID: 26691721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species-free species distribution models describe macroecological properties of protected area networks.
    Robinson JL; Fordyce JA
    PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species.
    González C; Wang O; Strutz SE; González-Salazar C; Sánchez-Cordero V; Sarkar S
    PLoS Negl Trop Dis; 2010 Jan; 4(1):e585. PubMed ID: 20098495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability.
    Howard C; Marjakangas EL; Morán-Ordóñez A; Milanesi P; Abuladze A; Aghababyan K; Ajder V; Arkumarev V; Balmer DE; Bauer HG; Beale CM; Bino T; Boyla KA; Burfield IJ; Burke B; Caffrey B; Chodkiewicz T; Del Moral JC; Mazal VD; Fernández N; Fornasari L; Gerlach B; Godinho C; Herrando S; Ieronymidou C; Johnston A; Jovicevic M; Kalyakin M; Keller V; Knaus P; Kotrošan D; Kuzmenko T; Leitão D; Lindström Å; Maxhuni Q; Mihelič T; Mikuska T; Molina B; Nagy K; Noble D; Øien IJ; Paquet JY; Pladevall C; Portolou D; Radišić D; Rajkov S; Rajković DZ; Raudonikis L; Sattler T; Saveljić D; Shimmings P; Sjenicic J; Šťastný K; Stoychev S; Strus I; Sudfeldt C; Sultanov E; Szép T; Teufelbauer N; Uzunova D; van Turnhout CAM; Velevski M; Vikstrøm T; Vintchevski A; Voltzit O; Voříšek P; Wilk T; Zurell D; Brotons L; Lehikoinen A; Willis SG
    Nat Commun; 2023 Jul; 14(1):4304. PubMed ID: 37474503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.
    Fernández-Chacón A; Stefanescu C; Genovart M; Nichols JD; Hines JE; Páramo F; Turco M; Oro D
    J Anim Ecol; 2014 Jan; 83(1):276-85. PubMed ID: 23957287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictors of contraction and expansion of area of occupancy for British birds.
    Bradshaw CJ; Brook BW; Delean S; Fordham DA; Herrando-Pérez S; Cassey P; Early R; Sekercioglu CH; Araújo MB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction.
    Yalcin S; Leroux SJ
    Glob Chang Biol; 2018 Aug; 24(8):3849-3861. PubMed ID: 29656456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Choice of baseline climate data impacts projected species' responses to climate change.
    Baker DJ; Hartley AJ; Butchart SH; Willis SG
    Glob Chang Biol; 2016 Jul; 22(7):2392-404. PubMed ID: 26950769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Projected impacts of climate change on the range and phenology of three culturally-important shrub species.
    Prevéy JS; Parker LE; Harrington CA
    PLoS One; 2020; 15(5):e0232537. PubMed ID: 32384124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data.
    Bateman BL; Pidgeon AM; Radeloff VC; Flather CH; VanDerWal J; Akçakaya HR; Thogmartin WE; Albright TP; Vavrus SJ; Heglund PJ
    Ecol Appl; 2016 Dec; 26(8):2718-2729. PubMed ID: 27907262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
    Pandit SN; Maitland BM; Pandit LK; Poesch MS; Enders EC
    Sci Total Environ; 2017 Nov; 598():1-11. PubMed ID: 28433817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.