These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32223195)

  • 1. Structural Comparison between Sucrose and Trehalose in Aqueous Solution.
    Olsson C; Swenson J
    J Phys Chem B; 2020 Apr; 124(15):3074-3082. PubMed ID: 32223195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the protein stabilizing effects of trehalose by comparing with sucrose.
    Ahlgren K; Olsson C; Ermilova I; Swenson J
    Phys Chem Chem Phys; 2023 Aug; 25(32):21215-21226. PubMed ID: 37534799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Aqueous Trehalose Solution by Neutron Diffraction and Structural Modeling.
    Olsson C; Jansson H; Youngs T; Swenson J
    J Phys Chem B; 2016 Dec; 120(49):12669-12678. PubMed ID: 27973816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations.
    Lerbret A; Bordat P; Affouard F; Descamps M; Migliardo F
    J Phys Chem B; 2005 Jun; 109(21):11046-57. PubMed ID: 16852346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of proteins embedded in sugars and water as studied by dielectric spectroscopy.
    Olsson C; Zangana R; Swenson J
    Phys Chem Chem Phys; 2020 Sep; 22(37):21197-21207. PubMed ID: 32930314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-protective effects of homologous disaccharides on biological macromolecules.
    Magazù S; Migliardo F; Benedetto A; La Torre R; Hennet L
    Eur Biophys J; 2012 Apr; 41(4):361-7. PubMed ID: 22038121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the rotational mobility of the sugar and water molecules in concentrated aqueous trehalose and sucrose solutions.
    Karger N; Lüdemann HD
    Z Naturforsch C J Biosci; 1991; 46(3-4):313-7. PubMed ID: 1652254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal aggregation of bovine serum albumin in trehalose and sucrose aqueous solutions.
    Panzica M; Emanuele A; Cordone L
    J Phys Chem B; 2012 Oct; 116(39):11829-36. PubMed ID: 22845790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The alpha,alpha-(1-->1) linkage of trehalose is key to anhydrobiotic preservation.
    Albertorio F; Chapa VA; Chen X; Diaz AJ; Cremer PS
    J Am Chem Soc; 2007 Aug; 129(34):10567-74. PubMed ID: 17676844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the interaction of proteins and disaccharides-The effect of pH and concentration.
    Reichert D; Gröger S; Hackel C
    Biopolymers; 2017 Feb; 107(2):39-45. PubMed ID: 27677543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions.
    Rampp M; Buttersack C; Lüdemann HD
    Carbohydr Res; 2000 Oct; 328(4):561-72. PubMed ID: 11093712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is trehalose special for preserving dry biomaterials?
    Crowe LM; Reid DS; Crowe JH
    Biophys J; 1996 Oct; 71(4):2087-93. PubMed ID: 8889183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration and aggregation in mono- and disaccharide aqueous solutions by gigahertz-to-terahertz light scattering and molecular dynamics simulations.
    Lupi L; Comez L; Paolantoni M; Perticaroli S; Sassi P; Morresi A; Ladanyi BM; Fioretto D
    J Phys Chem B; 2012 Dec; 116(51):14760-7. PubMed ID: 23205713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study.
    Shiraga K; Adachi A; Nakamura M; Tajima T; Ajito K; Ogawa Y
    J Chem Phys; 2017 Mar; 146(10):105102. PubMed ID: 28298096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermophysical properties of trehalose and its concentrated aqueous solutions.
    Miller DP; de Pablo JJ; Corti H
    Pharm Res; 1997 May; 14(5):578-90. PubMed ID: 9165527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin.
    Cottone G; Giuffrida S; Ciccotti G; Cordone L
    Proteins; 2005 May; 59(2):291-302. PubMed ID: 15723350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures.
    Zhang J; Zografi G
    J Pharm Sci; 2001 Sep; 90(9):1375-85. PubMed ID: 11745790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Sucrose and Trehalose for Protein Stabilization Using Differential Scanning Calorimetry.
    Jonsson O; Lundell A; Rosell J; You S; Ahlgren K; Swenson J
    J Phys Chem B; 2024 May; 128(20):4922-4930. PubMed ID: 38733344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran.
    Allison SD; Manning MC; Randolph TW; Middleton K; Davis A; Carpenter JF
    J Pharm Sci; 2000 Feb; 89(2):199-214. PubMed ID: 10688749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion characterization by self-distribution-function procedure.
    Magazù S; Maisano G; Migliardo F; Benedetto A
    Biochim Biophys Acta; 2010 Jan; 1804(1):49-55. PubMed ID: 19782771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.