These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32223259)

  • 1. Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors.
    El Abbassi M; Perrin ML; Barin GB; Sangtarash S; Overbeck J; Braun O; Lambert CJ; Sun Q; Prechtl T; Narita A; Müllen K; Ruffieux P; Sadeghi H; Fasel R; Calame M
    ACS Nano; 2020 May; 14(5):5754-5762. PubMed ID: 32223259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge Contacts to Atomically Precise Graphene Nanoribbons.
    Huang W; Braun O; Indolese DI; Barin GB; Gandus G; Stiefel M; Olziersky A; Müllen K; Luisier M; Passerone D; Ruffieux P; Schönenberger C; Watanabe K; Taniguchi T; Fasel R; Zhang J; Calame M; Perrin ML
    ACS Nano; 2023 Oct; 17(19):18706-18715. PubMed ID: 37578964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth Optimization and Device Integration of Narrow-Bandgap Graphene Nanoribbons.
    Borin Barin G; Sun Q; Di Giovannantonio M; Du CZ; Wang XY; Llinas JP; Mutlu Z; Lin Y; Wilhelm J; Overbeck J; Daniels C; Lamparski M; Sahabudeen H; Perrin ML; Urgel JI; Mishra S; Kinikar A; Widmer R; Stolz S; Bommert M; Pignedoli C; Feng X; Calame M; Müllen K; Narita A; Meunier V; Bokor J; Fasel R; Ruffieux P
    Small; 2022 Aug; 18(31):e2202301. PubMed ID: 35713270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary.
    Sun Q; Gröning O; Overbeck J; Braun O; Perrin ML; Borin Barin G; El Abbassi M; Eimre K; Ditler E; Daniels C; Meunier V; Pignedoli CA; Calame M; Fasel R; Ruffieux P
    Adv Mater; 2020 Mar; 32(12):e1906054. PubMed ID: 32048409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the Number of Graphene Nanoribbons in Dual-Gate Field-Effect Transistors.
    Zhang J; Barin GB; Furrer R; Du CZ; Wang XY; Müllen K; Ruffieux P; Fasel R; Calame M; Perrin ML
    Nano Lett; 2023 Sep; 23(18):8474-8480. PubMed ID: 37671914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons.
    Bouwmeester D; Ghiasi TS; Borin Barin G; Müllen K; Ruffieux P; Fasel R; van der Zant HSJ
    ACS Appl Nano Mater; 2023 Aug; 6(15):13935-13944. PubMed ID: 37588262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Dots in Graphene Nanoribbons.
    Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons.
    Overbeck J; Barin GB; Daniels C; Perrin ML; Braun O; Sun Q; Darawish R; De Luca M; Wang XY; Dumslaff T; Narita A; Müllen K; Ruffieux P; Meunier V; Fasel R; Calame M
    ACS Nano; 2019 Nov; 13(11):13083-13091. PubMed ID: 31573799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates.
    Mutlu Z; Llinas JP; Jacobse PH; Piskun I; Blackwell R; Crommie MF; Fischer FR; Bokor J
    ACS Nano; 2021 Feb; 15(2):2635-2642. PubMed ID: 33492120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomically Precise Graphene Nanoribbon Transistors with Long-Term Stability and Reliability.
    Dinh C; Yusufoglu M; Yumigeta K; Kinikar A; Sweepe T; Zeszut Z; Chang YJ; Copic C; Janssen S; Holloway R; Battaglia J; Kuntubek A; Zahin F; Lin YC; Vandenberghe WG; LeRoy BJ; Müllen K; Fasel R; Borin Barin G; Mutlu Z
    ACS Nano; 2024 Aug; 18(34):22949-22957. PubMed ID: 39145671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-narrow metallic armchair graphene nanoribbons.
    Kimouche A; Ervasti MM; Drost R; Halonen S; Harju A; Joensuu PM; Sainio J; Liljeroth P
    Nat Commun; 2015 Dec; 6():10177. PubMed ID: 26658960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions.
    Senkovskiy BV; Nenashev AV; Alavi SK; Falke Y; Hell M; Bampoulis P; Rybkovskiy DV; Usachov DY; Fedorov AV; Chernov AI; Gebhard F; Meerholz K; Hertel D; Arita M; Okuda T; Miyamoto K; Shimada K; Fischer FR; Michely T; Baranovskii SD; Lindfors K; Szkopek T; Grüneis A
    Nat Commun; 2021 May; 12(1):2542. PubMed ID: 33953174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contacting individual graphene nanoribbons using carbon nanotube electrodes.
    Zhang J; Qian L; Barin GB; Daaoub AHS; Chen P; Müllen K; Sangtarash S; Ruffieux P; Fasel R; Sadeghi H; Zhang J; Calame M; Perrin ML
    Nat Electron; 2023; 6(8):572-581. PubMed ID: 37636241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials Science Challenges to Graphene Nanoribbon Electronics.
    Saraswat V; Jacobberger RM; Arnold MS
    ACS Nano; 2021 Mar; 15(3):3674-3708. PubMed ID: 33656860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.