These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32223271)

  • 21. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.
    Kim Y; Smith JG; Jain PK
    Nat Chem; 2018 Jul; 10(7):763-769. PubMed ID: 29736005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring plasmonic hot-carrier chemical reactions at the single particle level.
    Simoncelli S; Pensa EL; Brick T; Gargiulo J; Lauri A; Cambiasso J; Li Y; Maier SA; Cortés E
    Faraday Discuss; 2019 May; 214(0):73-87. PubMed ID: 30810127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts.
    Zhang C; Zhao H; Zhou L; Schlather AE; Dong L; McClain MJ; Swearer DF; Nordlander P; Halas NJ
    Nano Lett; 2016 Oct; 16(10):6677-6682. PubMed ID: 27676189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Super-Resolution Mapping of a Chemical Reaction Driven by Plasmonic Near-Fields.
    Hamans RF; Parente M; Baldi A
    Nano Lett; 2021 Mar; 21(5):2149-2155. PubMed ID: 33606941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.
    Lu Y; Yu H; Chen S; Quan X; Zhao H
    Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doping of Nb
    Shiraishi Y; Imai J; Yasumoto N; Sakamoto H; Tanaka S; Ichikawa S; Hirai T
    Langmuir; 2019 Apr; 35(16):5455-5462. PubMed ID: 30916561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts.
    Wang S; Gao Y; Miao S; Liu T; Mu L; Li R; Fan F; Li C
    J Am Chem Soc; 2017 Aug; 139(34):11771-11778. PubMed ID: 28777568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.
    Robatjazi H; Zhao H; Swearer DF; Hogan NJ; Zhou L; Alabastri A; McClain MJ; Nordlander P; Halas NJ
    Nat Commun; 2017 Jun; 8(1):27. PubMed ID: 28638073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis.
    Zhou L; Swearer DF; Zhang C; Robatjazi H; Zhao H; Henderson L; Dong L; Christopher P; Carter EA; Nordlander P; Halas NJ
    Science; 2018 Oct; 362(6410):69-72. PubMed ID: 30287657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.
    Jiang J; Li H; Zhang L
    Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution.
    Kang Y; Gong Y; Hu Z; Li Z; Qiu Z; Zhu X; Ajayan PM; Fang Z
    Nanoscale; 2015 Mar; 7(10):4482-8. PubMed ID: 25682885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO
    Teixeira IF; Homsi MS; Geonmonond RS; Rocha GFSR; Peng YK; Silva IF; Quiroz J; Camargo PHC
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction.
    Liang W; Sun Y; Liang Z; Li D; Wang Y; Qin W; Jiang L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16753-16761. PubMed ID: 32119778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic Effect of Fe Doping and Plasmonic Au Nanoparticles on W
    Vu MH; Nguyen CC; Do TO
    ACS Sustain Chem Eng; 2020 Aug; 8(32):12321-12330. PubMed ID: 32832280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Plasmonic Molybdenum Oxide Hybrid with Reversible Tunability for Visible-Light-Enhanced Catalytic Reactions.
    Cheng H; Qian X; Kuwahara Y; Mori K; Yamashita H
    Adv Mater; 2015 Aug; 27(31):4616-21. PubMed ID: 26173030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.
    Peng T; Miao J; Gao Z; Zhang L; Gao Y; Fan C; Li D
    Small; 2018 Mar; 14(12):e1703510. PubMed ID: 29457350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.