These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32223271)

  • 61. Plasmonic hot electron transfer in anisotropic Pt-Au nanodisks boosts electrochemical reactions in the visible-NIR region.
    Chen G; Sun M; Li J; Zhu M; Lou Z; Li B
    Nanoscale; 2019 Oct; 11(40):18874-18880. PubMed ID: 31596285
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    SzczerbiƄski J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions.
    Zhang Y; Nelson T; Tretiak S; Guo H; Schatz GC
    ACS Nano; 2018 Aug; 12(8):8415-8422. PubMed ID: 30001116
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plasmon-Enhanced Deuteration under Visible-Light Irradiation.
    Dong Y; Su Y; Du L; Wang R; Zhang L; Zhao D; Xie W
    ACS Nano; 2019 Sep; 13(9):10754-10760. PubMed ID: 31487455
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metal-Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic Photocatalysis.
    Hong JW; Wi DH; Lee SU; Han SW
    J Am Chem Soc; 2016 Dec; 138(48):15766-15773. PubMed ID: 27933998
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.
    Yan R; Chen M; Zhou H; Liu T; Tang X; Zhang K; Zhu H; Ye J; Zhang D; Fan T
    Sci Rep; 2016 Jan; 6():20001. PubMed ID: 26818680
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanistic Insights into Photocatalyzed Hydrogen Desorption from Palladium Surfaces Assisted by Localized Surface Plasmon Resonances.
    Spata VA; Carter EA
    ACS Nano; 2018 Apr; 12(4):3512-3522. PubMed ID: 29558105
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation.
    Zheng Z; Majima T
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2879-83. PubMed ID: 26804726
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions.
    Cui J; Li Y; Liu L; Chen L; Xu J; Ma J; Fang G; Zhu E; Wu H; Zhao L; Wang L; Huang Y
    Nano Lett; 2015 Oct; 15(10):6295-301. PubMed ID: 26373787
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Chemical Potential of Plasmonic Excitations.
    Yu S; Jain PK
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):2085-2088. PubMed ID: 31765516
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Photocatalytic Activities Enhanced by Au-Plasmonic Nanoparticles on TiO
    Li CJ; Tseng CM; Lai SN; Yang CR; Hung WH
    Nanoscale Res Lett; 2017 Oct; 12(1):560. PubMed ID: 28986769
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Shining Light on Aluminum Nanoparticle Synthesis.
    Jacobson CR; Solti D; Renard D; Yuan L; Lou M; Halas NJ
    Acc Chem Res; 2020 Sep; 53(9):2020-2030. PubMed ID: 32865962
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Integration of Plasmonic Effects and Schottky Junctions into Metal-Organic Framework Composites: Steering Charge Flow for Enhanced Visible-Light Photocatalysis.
    Xiao JD; Han L; Luo J; Yu SH; Jiang HL
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1103-1107. PubMed ID: 29215207
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electronic Structure-Dependent Surface Plasmon Resonance in Single Au-Fe Nanoalloys.
    Alexander DTL; Forrer D; Rossi E; Lidorikis E; Agnoli S; Bernasconi GD; Butet J; Martin OJF; Amendola V
    Nano Lett; 2019 Aug; 19(8):5754-5761. PubMed ID: 31348861
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO)
    Sun Y; Zhao Z; Zhang W; Gao C; Zhang Y; Dong F
    J Colloid Interface Sci; 2017 Jan; 485():1-10. PubMed ID: 27639168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.