These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32223406)

  • 1. The fourth law of thermodynamics: steepest entropy ascent.
    Beretta GP
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2170):20190168. PubMed ID: 32223406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.
    Beretta GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042113. PubMed ID: 25375444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized thermodynamic relations for a system experiencing heat and mass diffusion in the far-from-equilibrium realm based on steepest entropy ascent.
    Li G; von Spakovsky MR
    Phys Rev E; 2016 Sep; 94(3-1):032117. PubMed ID: 27739710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics.
    Montefusco A; Consonni F; Beretta GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042138. PubMed ID: 25974469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic properties of conservation-dissipation formalism of irreversible thermodynamics.
    Yong WA
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2170):20190177. PubMed ID: 32223404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state.
    Li G; von Spakovsky MR
    Phys Rev E; 2016 Jan; 93(1):012137. PubMed ID: 26871054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Energy and Time-Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations.
    Beretta GP
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steepest-entropy-ascent nonequilibrium quantum thermodynamic framework to model chemical reaction rates at an atomistic level.
    Beretta GP; Al-Abbasi O; von Spakovsky MR
    Phys Rev E; 2017 Apr; 95(4-1):042139. PubMed ID: 28505826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symplectic Foliation Structures of Non-Equilibrium Thermodynamics as Dissipation Model: Application to Metriplectic Nonlinear Lindblad Quantum Master Equation.
    Barbaresco F
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation of moment equations for rarefied gases within two frameworks of non-equilibrium thermodynamics: RET and GENERIC.
    Öttinger HC; Struchtrup H; Torrilhon M
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2170):20190174. PubMed ID: 32223403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature atomistic spin relaxation and non-equilibrium intensive properties using steepest-entropy-ascent quantum-inspired thermodynamics modeling.
    Yamada R; von Spakovsky MR; Reynolds WT
    J Phys Condens Matter; 2019 Dec; 31(50):505901. PubMed ID: 31470419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermodynamic scaling law for electrically perturbed lipid membranes: Validation with steepest entropy ascent framework.
    Goswami I; Bielitz R; Verbridge SS; von Spakovsky MR
    Bioelectrochemistry; 2021 Aug; 140():107800. PubMed ID: 33910115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for predicting non-equilibrium thermal expansion using steepest-entropy-ascent quantum thermodynamics.
    Yamada R; von Spakovsky MR; Reynolds WT
    J Phys Condens Matter; 2018 Aug; 30(32):325901. PubMed ID: 29964269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy production and the geometry of dissipative evolution equations.
    Reina C; Zimmer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052117. PubMed ID: 26651657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steepest entropy ascent solution for a continuous-time quantum walker.
    Ray RK
    Phys Rev E; 2022 Aug; 106(2-1):024115. PubMed ID: 36109967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear dissipation and nonequilibrium gas flows.
    Wu D; Wang D; Xiao H
    Phys Rev E; 2019 Sep; 100(3-1):032101. PubMed ID: 31639908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.
    Polettini M; Esposito M
    J Chem Phys; 2014 Jul; 141(2):024117. PubMed ID: 25028009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium thermodynamics: emergent and fundamental.
    Ván P
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2170):20200066. PubMed ID: 32223409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics and evolution.
    Demetrius L
    J Theor Biol; 2000 Sep; 206(1):1-16. PubMed ID: 10968933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
    Qian H; Beard DA
    Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.