BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3222341)

  • 61. Synthesis, anticancer activity and radiosensitizing evaluation of some new 2-pyridone derivatives.
    El-Said MS; El-Gazzar MG; Al-Dosari MS; Ghorab MM
    Arzneimittelforschung; 2012 Mar; 62(3):149-56. PubMed ID: 22270843
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microplate screening of the differential effects of test agents on Hoechst 33342, rhodamine 123, and rhodamine 6G accumulation in breast cancer cells that overexpress P-glycoprotein.
    Sarver JG; Klis WA; Byers JP; Erhardt PW
    J Biomol Screen; 2002 Feb; 7(1):29-34. PubMed ID: 11897053
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis.
    Wolfram RK; Heller L; Csuk R
    Eur J Med Chem; 2018 May; 152():21-30. PubMed ID: 29684707
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dynamic aspects of rhodamine dye photosensitization in vitro with an argon-ion laser.
    Shea CR; Chen N; Hasan T
    Lasers Surg Med; 1989; 9(2):83-9. PubMed ID: 2716464
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinoma.
    Herr HW; Huffman JL; Huryk R; Heston WD; Melamed MR; Whitmore WF
    Cancer Res; 1988 Apr; 48(8):2061-3. PubMed ID: 3349477
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bromodeoxyuridine: a comparison of its photosensitizing and radiosensitizing properties.
    Raffel C; Deen DF; Edwards MS
    J Neurosurg; 1988 Sep; 69(3):410-5. PubMed ID: 3404239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phototherapy with the argon laser on human melanoma cells "sensitized" with rhodamine-123: a new method for tumor growth inhibition.
    Castro DJ; Saxton RE; Fetterman HR; Castro DJ; Ward PH
    Laryngoscope; 1988 Apr; 98(4):369-76. PubMed ID: 3352433
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Benzethonium chloride: a novel anticancer agent identified by using a cell-based small-molecule screen.
    Yip KW; Mao X; Au PY; Hedley DW; Chow S; Dalili S; Mocanu JD; Bastianutto C; Schimmer A; Liu FF
    Clin Cancer Res; 2006 Sep; 12(18):5557-69. PubMed ID: 17000693
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photodynamic effects on cells in vitro exposed to hematoporphyrin derivative and light.
    Moan J; McGhie J; Jacobsen PB
    Photochem Photobiol; 1983 Jun; 37(6):599-604. PubMed ID: 6225133
    [No Abstract]   [Full Text] [Related]  

  • 70. In vitro evaluation of phototoxic properties of four structurally related benzoporphyrin derivatives.
    Richter AM; Waterfield E; Jain AK; Sternberg ED; Dolphin D; Levy JG
    Photochem Photobiol; 1990 Sep; 52(3):495-500. PubMed ID: 2284343
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mitochondrial targeting for photochemotherapy. Can selective tumor cell killing be predicted based on n-octanol/water distribution coefficients?
    Belostotsky I; da Silva SM; Paez MG; Indig GL
    Biotech Histochem; 2011 Oct; 86(5):302-14. PubMed ID: 20465515
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rhodamine 6G, inhibitor of both H+-ejections from mitochondria energized with ATP and with respiratory substrates.
    Higuti T; Niimi S; Saito R; Nakasima S; Ohe T; Tani I; Yoshimura T
    Biochim Biophys Acta; 1980 Dec; 593(2):463-7. PubMed ID: 7236646
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The mitochondrial probe rhodamine 123 inhibits in isolated hepatocytes the degradation of short-lived proteins.
    Vargas JL; Roche E; Knecht E; Aniento F; GrisolĂ­a S
    FEBS Lett; 1988 Jun; 233(2):259-62. PubMed ID: 3384093
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tunable cytotoxicity of rhodamine 6G via anion variations.
    Magut PK; Das S; Fernand VE; Losso J; McDonough K; Naylor BM; Aggarwal S; Warner IM
    J Am Chem Soc; 2013 Oct; 135(42):15873-9. PubMed ID: 24059469
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Utility of methyl 2-isothiocyanatobenzoate in the synthesis of some new quinazoline derivatives as potential anticancer and radiosensitizing agents.
    Ghorab MM; Ragab FA; Heiba HI; Bayomi AA
    Arzneimittelforschung; 2011; 61(12):719-26. PubMed ID: 22282960
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cytotoxic and radio-sensitizing effects of polyphenolic acetates in a human glioma cell line (BMG-1).
    Verma A; Venkateswaran K; Farooque A; Bhatt AN; Kalra N; Arya A; Dhawan A; Arya MB; Raj HG; Prasad AK; Parmar VS; Dwarakanath BS
    Curr Pharm Des; 2014; 20(7):1161-9. PubMed ID: 24552186
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Combination of radiation and celebrex (celecoxib) reduce mammary and lung tumor growth.
    Liu W; Chen Y; Wang W; Keng P; Finkelstein J; Hu D; Liang L; Guo M; Fenton B; Okunieff P; Ding I
    Am J Clin Oncol; 2003 Aug; 26(4):S103-9. PubMed ID: 12902866
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Paclitaxel enhanced radiation sensitization for the suppression of human prostate cancer tumor growth via a p53 independent pathway.
    Zhang AL; Russell PJ; Knittel T; Milross C
    Prostate; 2007 Nov; 67(15):1630-40. PubMed ID: 17823933
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Radiosensitization of uterine cancer cell lines by cytotoxic agents.
    Nguyen HN; Sevin BU; Averette HE; Gottlieb C; Perras J; Donato D; Penalver M
    Gynecol Oncol; 1993 Jan; 48(1):16-22. PubMed ID: 8423017
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Photosensitization of human leukemic cells by anthracenedione antitumor agents.
    Hartley JA; Forrow SM; Souhami RL; Reszka K; Lown JW
    Cancer Res; 1990 Mar; 50(6):1936-40. PubMed ID: 2306743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.