BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32224152)

  • 1. Molecular architecture and assembly of the tight junction backbone.
    Piontek J; Krug SM; Protze J; Krause G; Fromm M
    Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183279. PubMed ID: 32224152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation.
    Piontek A; Rossa J; Protze J; Wolburg H; Hempel C; Günzel D; Krause G; Piontek J
    Ann N Y Acad Sci; 2017 Jun; 1397(1):143-156. PubMed ID: 28415153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner.
    Hempel C; Protze J; Altun E; Riebe B; Piontek A; Fromm A; Lee IM; Saleh T; Günzel D; Krause G; Piontek J
    J Mol Biol; 2020 Mar; 432(7):2405-2427. PubMed ID: 32142789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for the architecture of claudin-based paracellular ion channels through tight junctions.
    Suzuki H; Tani K; Tamura A; Tsukita S; Fujiyoshi Y
    J Mol Biol; 2015 Jan; 427(2):291-7. PubMed ID: 25451028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments.
    Rossa J; Ploeger C; Vorreiter F; Saleh T; Protze J; Günzel D; Wolburg H; Krause G; Piontek J
    J Biol Chem; 2014 Mar; 289(11):7641-53. PubMed ID: 24478310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A refined model of claudin-15 tight junction paracellular architecture by molecular dynamics simulations.
    Alberini G; Benfenati F; Maragliano L
    PLoS One; 2017; 12(9):e0184190. PubMed ID: 28863193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3.
    Milatz S; Piontek J; Schulzke JD; Blasig IE; Fromm M; Günzel D
    Biochem J; 2015 Jun; 468(3):449-58. PubMed ID: 25849148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly Simulations of Classic Claudins-Insights into the Pore Structure, Selectivity, and Higher Order Complexes.
    Irudayanathan FJ; Wang X; Wang N; Willsey SR; Seddon IA; Nangia S
    J Phys Chem B; 2018 Aug; 122(30):7463-7474. PubMed ID: 29869889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual barriers to understanding physical barriers.
    Lingaraju A; Long TM; Wang Y; Austin JR; Turner JR
    Semin Cell Dev Biol; 2015 Jun; 42():13-21. PubMed ID: 26003050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruffles and spikes: Control of tight junction morphology and permeability by claudins.
    Lynn KS; Peterson RJ; Koval M
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183339. PubMed ID: 32389670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and function of claudins: Structure-function relationships based on homology models and crystal structures.
    Krause G; Protze J; Piontek J
    Semin Cell Dev Biol; 2015 Jun; 42():3-12. PubMed ID: 25957516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands.
    Piontek J; Fritzsche S; Cording J; Richter S; Hartwig J; Walter M; Yu D; Turner JR; Gehring C; Rahn HP; Wolburg H; Blasig IE
    Cell Mol Life Sci; 2011 Dec; 68(23):3903-18. PubMed ID: 21533891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Claudins and other tight junction proteins.
    Günzel D; Fromm M
    Compr Physiol; 2012 Jul; 2(3):1819-52. PubMed ID: 23723025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight junction strand formation by claudin-10 isoforms and claudin-10a/-10b chimeras.
    Milatz S; Piontek J; Hempel C; Meoli L; Grohe C; Fromm A; Lee IM; El-Athman R; Günzel D
    Ann N Y Acad Sci; 2017 Oct; 1405(1):102-115. PubMed ID: 28633196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulations of Claudin-10a and -10b Ion Channels: With Similar Architecture, Different Pore Linings Determine the Opposite Charge Selectivity.
    Nagarajan SK; Piontek J
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight junctions of the proximal tubule and their channel proteins.
    Fromm M; Piontek J; Rosenthal R; Günzel D; Krug SM
    Pflugers Arch; 2017 Aug; 469(7-8):877-887. PubMed ID: 28600680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel functions of claudins in the organization of biological systems.
    Meoli L; Günzel D
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183344. PubMed ID: 32442419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modeling of Claudin Structure and Function.
    Fuladi S; Jannat RW; Shen L; Weber CR; Khalili-Araghi F
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions of claudin tight junction proteins and their complex interactions in various physiological systems.
    Elkouby-Naor L; Ben-Yosef T
    Int Rev Cell Mol Biol; 2010; 279():1-32. PubMed ID: 20797675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and structural transmembrane determinants critical for embedding claudin-5 into tight junctions reveal a distinct four-helix bundle arrangement.
    Rossa J; Protze J; Kern C; Piontek A; Günzel D; Krause G; Piontek J
    Biochem J; 2014 Nov; 464(1):49-60. PubMed ID: 25174580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.