These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 32224357)
21. Analytical Technique Optimization on the Detection of β-cyclocitral in Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007 [TBL] [Abstract][Full Text] [Related]
22. Isolation of axenic cyanobacterium and the promoting effect of associated bacterium on axenic cyanobacterium. Gao S; Kong Y; Yu J; Miao L; Ji L; Song L; Zeng C BMC Biotechnol; 2020 Nov; 20(1):61. PubMed ID: 33256756 [TBL] [Abstract][Full Text] [Related]
23. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Devi A; Chiu YT; Hsueh HT; Lin TF Water Res; 2021 Jan; 188():116478. PubMed ID: 33045635 [TBL] [Abstract][Full Text] [Related]
24. Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. Shen Q; Wang Q; Miao H; Shimada M; Utsumi M; Lei Z; Zhang Z; Nishimura O; Asada Y; Fujimoto N; Takanashi H; Akiba M; Shimizu K Environ Sci Pollut Res Int; 2022 Feb; 29(8):12017-12026. PubMed ID: 34558048 [TBL] [Abstract][Full Text] [Related]
25. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant. Shang L; Feng M; Xu X; Liu F; Ke F; Li W Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29301296 [TBL] [Abstract][Full Text] [Related]
26. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Watson SB; Monis P; Baker P; Giglio S Harmful Algae; 2016 Apr; 54():112-127. PubMed ID: 28073471 [TBL] [Abstract][Full Text] [Related]
27. β-cyclocitral induced rapid cell death of Microcystis aeruginosa. Wang X; Cao H; Zhu Y; Zhou T; Teng F; Tao Y Environ Pollut; 2024 May; 348():123824. PubMed ID: 38513945 [TBL] [Abstract][Full Text] [Related]
28. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. Chen Q; Wang L; Qi Y; Ma C Chemosphere; 2020 Nov; 259():127430. PubMed ID: 32593822 [TBL] [Abstract][Full Text] [Related]
29. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa. Zhang Q; Chen Y; Wang M; Zhang J; Chen Q; Liu D Water Res; 2021 May; 196():117048. PubMed ID: 33773451 [TBL] [Abstract][Full Text] [Related]
30. Interspecific competition between Microcystis aeruginosa and Anabaena flos-aquae from Taihu Lake, China. Zhang XW; Fu J; Song S; Zhang P; Yang XH; Zhang LR; Luo Y; Liu CH; Zhu HL Z Naturforsch C J Biosci; 2014; 69(1-2):53-60. PubMed ID: 24772823 [TBL] [Abstract][Full Text] [Related]
31. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Ma Z; Fang T; Thring RW; Li Y; Yu H; Zhou Q; Zhao M Harmful Algae; 2015 Sep; 48():21-29. PubMed ID: 29724472 [TBL] [Abstract][Full Text] [Related]
32. Effects of Phenolic Pollution on Interspecific Competition between Tan X; Dai K; Parajuli K; Hang X; Duan Z; Hu Y Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627270 [TBL] [Abstract][Full Text] [Related]
33. Biosynthesis of 2-methylisoborneol in cyanobacteria. Giglio S; Chou WK; Ikeda H; Cane DE; Monis PT Environ Sci Technol; 2011 Feb; 45(3):992-8. PubMed ID: 21174459 [TBL] [Abstract][Full Text] [Related]
34. Chemically mediated interactions between Microcystis and Planktothrix: impact on their growth, morphology and metabolic profiles. Briand E; Reubrecht S; Mondeguer F; Sibat M; Hess P; Amzil Z; Bormans M Environ Microbiol; 2019 May; 21(5):1552-1566. PubMed ID: 30485643 [TBL] [Abstract][Full Text] [Related]
35. Antibiotic pollution promotes dominance by harmful cyanobacteria: A case study examining norfloxacin exposure in competition experiments. Li JJ; Chao JJ; McKay RML; Xu RB; Wang T; Xu J; Zhang JL; Chang XX J Phycol; 2021 Apr; 57(2):677-688. PubMed ID: 33483964 [TBL] [Abstract][Full Text] [Related]
36. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes. Shan K; Song L; Chen W; Li L; Liu L; Wu Y; Jia Y; Zhou Q; Peng L Harmful Algae; 2019 Apr; 84():84-94. PubMed ID: 31128816 [TBL] [Abstract][Full Text] [Related]
37. Relationship between Photosynthetic Capacity and Microcystin Production in Toxic Wang X; Wang P; Wang C; Qian J; Feng T; Yang Y Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205471 [TBL] [Abstract][Full Text] [Related]
38. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. Arii S; Yamashita R; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada KI Chemosphere; 2021 Dec; 284():131378. PubMed ID: 34217930 [TBL] [Abstract][Full Text] [Related]
39. Toxicity of the disinfectant benzalkonium chloride (C Jia Y; Huang Y; Ma J; Zhang S; Liu J; Li T; Song L J Environ Sci (China); 2024 Jan; 135():198-209. PubMed ID: 37778795 [TBL] [Abstract][Full Text] [Related]
40. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation. Ren L; Wang P; Wang C; Paerl HW; Wang H Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]