These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32224401)

  • 1. Differential effects of the urban heat island on thermal responses of freshwater fishes from unmanaged and managed systems.
    Pagliaro MD; Knouft JH
    Sci Total Environ; 2020 Jun; 723():138084. PubMed ID: 32224401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size.
    Brans KI; Jansen M; Vanoverbeke J; Tüzün N; Stoks R; De Meester L
    Glob Chang Biol; 2017 Dec; 23(12):5218-5227. PubMed ID: 28614592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological thermal limits predict differential responses of bees to urban heat-island effects.
    Hamblin AL; Youngsteadt E; López-Uribe MM; Frank SD
    Biol Lett; 2017 Jun; 13(6):. PubMed ID: 28637837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does thermal history influence thermal tolerance of the freshwater fish Galaxias zebratus in a global biodiversity hotspot?
    Olsen T; Shelton JM; Dallas HF
    J Therm Biol; 2021 Apr; 97():102890. PubMed ID: 33863447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal tolerance of cyprinids along an urban-rural gradient: Plasticity, repeatability and effects of swimming and temperature shock.
    Nelson JA; Rieger KJ; Gruber D; Cutler M; Buckner B; Oufiero CE
    J Therm Biol; 2021 Aug; 100():103047. PubMed ID: 34503794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometric variation in bluegill Lepomis macrochirus and green sunfish Lepomis cyanellus in lentic and lotic systems.
    Gaston KA; Lauer TE
    J Fish Biol; 2015 Jan; 86(1):317-32. PubMed ID: 25425144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal tolerance depends on season, age and body condition in imperilled redside dace
    Turko AJ; Nolan CB; Balshine S; Scott GR; Pitcher TE
    Conserv Physiol; 2020; 8(1):coaa062. PubMed ID: 32765883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited variability in upper thermal tolerance among pure and hybrid populations of a cold-water fish.
    Wells ZR; McDonnell LH; Chapman LJ; Fraser DJ
    Conserv Physiol; 2016; 4(1):cow063. PubMed ID: 27990291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.
    Battles AC; Kolbe JJ
    Glob Chang Biol; 2019 Feb; 25(2):562-576. PubMed ID: 30388300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands.
    Youngsteadt E; Ernst AF; Dunn RR; Frank SD
    Glob Chang Biol; 2017 Apr; 23(4):1436-1447. PubMed ID: 27809387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.
    Jenerette GD; Harlan SL; Stefanov WL; Martin CA
    Ecol Appl; 2011 Oct; 21(7):2637-51. PubMed ID: 22073649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel habitats for biodiversity? A systematic review and meta-analysis of freshwater biodiversity in stormwater management ponds.
    Ferzoco IMC; McCauley SJ
    Sci Total Environ; 2024 Sep; 942():173467. PubMed ID: 38802007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae.
    Moyano M; Candebat C; Ruhbaum Y; Álvarez-Fernández S; Claireaux G; Zambonino-Infante JL; Peck MA
    PLoS One; 2017; 12(7):e0179928. PubMed ID: 28749960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on performance and physiology of two prairie stream minnows.
    Frenette BD; Bruckerhoff LA; Tobler M; Gido KB
    Conserv Physiol; 2019; 7(1):coz063. PubMed ID: 31687142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urban ponds as an aquatic biodiversity resource in modified landscapes.
    Hill MJ; Biggs J; Thornhill I; Briers RA; Gledhill DG; White JC; Wood PJ; Hassall C
    Glob Chang Biol; 2017 Mar; 23(3):986-999. PubMed ID: 27476680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities.
    Diamond SE; Chick LD; Perez A; Strickler SA; Martin RA
    Proc Biol Sci; 2018 Jul; 285(1882):. PubMed ID: 30051828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal changes in mitochondrial bioenergetics and physiological performance of the bluegill sunfish, Lepomis macrochirus, from a shallow, Midwest river.
    Lamptey DI; Sparks RW; De Oca RM; Skolik R; Menze MA; Martinez E
    J Therm Biol; 2022 Feb; 104():103186. PubMed ID: 35180965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi.
    Cooper CJ; Mueller CA; Eme J
    J Therm Biol; 2019 Dec; 86():102434. PubMed ID: 31789229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.