These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32224443)

  • 61. Characterization of the zebrafish vascular endothelial growth factor A gene: comparison with vegf-A genes in mammals and Fugu.
    Gong B; Liang D; Chew TG; Ge R
    Biochim Biophys Acta; 2004 Jan; 1676(1):33-40. PubMed ID: 14732488
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recognition of the 5' splice site by the spliceosome.
    Konarska MM
    Acta Biochim Pol; 1998; 45(4):869-81. PubMed ID: 10397335
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs.
    Suh YH; Shin YK; Kook MC; Oh KI; Park WS; Kim SH; Lee IS; Park HJ; Huh TL; Park SH
    Gene; 2003 Mar; 307():63-76. PubMed ID: 12706889
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Widespread intra-dependencies in the removal of introns from human transcripts.
    Kim SW; Taggart AJ; Heintzelman C; Cygan KJ; Hull CG; Wang J; Shrestha B; Fairbrother WG
    Nucleic Acids Res; 2017 Sep; 45(16):9503-9513. PubMed ID: 28934498
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A 38 nt region and its flanking sequences within gag of Friend murine leukemia virus are crucial for splicing at the correct 5' and 3' splice sites.
    Machinaga A; Takase-Yoden S
    Microbiol Immunol; 2014 Jan; 58(1):38-50. PubMed ID: 24236664
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns.
    Slavov D; Gardiner K
    Gene; 2002 Oct; 299(1-2):83-94. PubMed ID: 12459255
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New Insights into the Evolution and Gene Structure of the Mitochondrial Carrier Family Unveiled by Analyzing the Frequent and Conserved Intron Positions.
    Monné M; Cianciulli A; Panaro MA; Calvello R; De Grassi A; Palmieri L; Mitolo V; Palmieri F
    Mol Biol Evol; 2023 Mar; 40(3):. PubMed ID: 36916992
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Imaging Intron Evolution.
    Panaro MA; Calvello R; Miniero DV; Mitolo V; Cianciulli A
    Methods Protoc; 2022 Jun; 5(4):. PubMed ID: 35893579
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Does drive toward canonic exonic splicing sites exist in mammals?
    Babenko V; Ward W; Ruvinsky A
    J Mol Evol; 2010 Apr; 70(4):387-94. PubMed ID: 20336453
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evolution of Nova-dependent splicing regulation in the brain.
    Jelen N; Ule J; Zivin M; Darnell RB
    PLoS Genet; 2007 Oct; 3(10):1838-47. PubMed ID: 17937501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mitochondrial SLC25 Carriers: Novel Targets for Cancer Therapy.
    Rochette L; Meloux A; Zeller M; Malka G; Cottin Y; Vergely C
    Molecules; 2020 May; 25(10):. PubMed ID: 32455902
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessing the fraction of short-distance tandem splice sites under purifying selection.
    Hiller M; Szafranski K; Sinha R; Huse K; Nikolajewa S; Rosenstiel P; Schreiber S; Backofen R; Platzer M
    RNA; 2008 Apr; 14(4):616-29. PubMed ID: 18268022
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Frequent gain and loss of intronic splicing regulatory elements during the evolution of vertebrates.
    Voelker RB; Erkelenz S; Reynoso V; Schaal H; Berglund JA
    Genome Biol Evol; 2012; 4(7):659-74. PubMed ID: 22619362
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exon definitive regions for
    Koh E; Shin D; Kim KS
    Mol Ther Nucleic Acids; 2023 Mar; 31():398-410. PubMed ID: 36817727
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spliceosomal mutations decouple 3' splice site fidelity from cellular fitness.
    Roy KR; Gabunilas J; Neutel D; Ai M; Samson J; Lyu G; Chanfreau GF
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711521
    [TBL] [Abstract][Full Text] [Related]  

  • 77. SpliceViNCI: Visualizing the splicing of non-canonical introns through recurrent neural networks.
    Dutta A; Singh KK; Anand A
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150014. PubMed ID: 34088258
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evidence that introns arose at proto-splice sites.
    Dibb NJ; Newman AJ
    EMBO J; 1989 Jul; 8(7):2015-21. PubMed ID: 2792080
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development.
    Seoighe C; Korir PK
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S16. PubMed ID: 22151910
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Surprisingly high number of Twintrons in vertebrates.
    Janice J; Jąkalski M; Makałowski W
    Biol Direct; 2013 Jan; 8():4. PubMed ID: 23356793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.