These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32224511)

  • 1. A state-based probabilistic method for decoding hand position during movement from ECoG signals in non-human primate.
    Farrokhi B; Erfanian A
    J Neural Eng; 2020 May; 17(2):026042. PubMed ID: 32224511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocorticographic signals comparison in sensorimotor cortex between contralateral and ipsilateral hand movements.
    Yile Jin ; Mingwei Lu ; Xiaotian Wang ; Shaomin Zhang ; Junming Zhu ; Xiaoxiang Zheng
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1544-1547. PubMed ID: 28268621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural decoding of electrocorticographic signals using dynamic mode decomposition.
    Shiraishi Y; Kawahara Y; Yamashita O; Fukuma R; Yamamoto S; Saitoh Y; Kishima H; Yanagisawa T
    J Neural Eng; 2020 Jun; 17(3):036009. PubMed ID: 32289756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing gesture decoding performance using signals from posterior parietal cortex: a stereo-electroencephalograhy (SEEG) study.
    Wang M; Li G; Jiang S; Wei Z; Hu J; Chen L; Zhang D
    J Neural Eng; 2020 Sep; 17(4):046043. PubMed ID: 32498049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of electrocorticogram high-gamma signal in response to varying upper extremity movement velocity.
    Wang PT; McCrimmon CM; King CE; Shaw SJ; Millett DE; Gong H; Chui LA; Liu CY; Nenadic Z; Do AH
    Brain Struct Funct; 2017 Nov; 222(8):3705-3748. PubMed ID: 28523425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Conventional and Tri-Polar EEG Electrodes for Decoding Real and Imaginary Finger Movements from One Hand.
    Alzahrani SI; Anderson CW
    Int J Neural Syst; 2021 Sep; 31(9):2150036. PubMed ID: 34247553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Swallowing Decoder Based on Deep Transfer Learning: AlexNet Classification of the Intracranial Electrocorticogram.
    Hashimoto H; Kameda S; Maezawa H; Oshino S; Tani N; Khoo HM; Yanagisawa T; Yoshimine T; Kishima H; Hirata M
    Int J Neural Syst; 2021 Nov; 31(11):2050056. PubMed ID: 32938263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding individual finger movements from one hand using human EEG signals.
    Liao K; Xiao R; Gonzalez J; Ding L
    PLoS One; 2014; 9(1):e85192. PubMed ID: 24416360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG.
    Peterson V; Wyser D; Lambercy O; Spies R; Gassert R
    J Neural Eng; 2019 Feb; 16(1):016019. PubMed ID: 30623892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and accurate decoding of finger movements from ECoG through Riemannian features and modern machine learning techniques.
    Yao L; Zhu B; Shoaran M
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35078156
    [No Abstract]   [Full Text] [Related]  

  • 16. Continuous decoding of human grasp kinematics using epidural and subdural signals.
    Flint RD; Rosenow JM; Tate MC; Slutzky MW
    J Neural Eng; 2017 Feb; 14(1):016005. PubMed ID: 27900947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of contralateral and ipsilateral finger movements for electrocorticographic brain-computer interfaces.
    Scherer R; Zanos SP; Miller KJ; Rao RP; Ojemann JG
    Neurosurg Focus; 2009 Jul; 27(1):E12. PubMed ID: 19569887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unilateral, 3D Arm Movement Kinematics Are Encoded in Ipsilateral Human Cortex.
    Bundy DT; Szrama N; Pahwa M; Leuthardt EC
    J Neurosci; 2018 Nov; 38(47):10042-10056. PubMed ID: 30301759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation and decoding of bilateral arm motor imagery using unilateral cerebral LFP signals.
    Lin J; Lai D; Wan Z; Feng L; Zhu J; Zhang J; Wang Y; Xu K
    Front Hum Neurosci; 2023; 17():1168017. PubMed ID: 37388414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Speech Onset by Micro-Electrocorticography of the Human Brain.
    Delfino E; Pastore A; Zucchini E; Cruz MFP; Ius T; Vomero M; D'Ausilio A; Casile A; Skrap M; Stieglitz T; Fadiga L
    Int J Neural Syst; 2021 Jul; 31(7):2150025. PubMed ID: 34130614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.