These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 32224887)
1. Effect of Gradient Energy Density on the Microstructure and Mechanical Properties of Ti6Al4V Fabricated by Selective Electron Beam Additive Manufacture. Hsu TI; Jhong YT; Tsai MH Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224887 [TBL] [Abstract][Full Text] [Related]
2. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting. Mohammad A; Alahmari AM; Mohammed MK; Renganayagalu RK; Moiduddin K Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772572 [TBL] [Abstract][Full Text] [Related]
3. The Martensitic Transformation and Mechanical Properties of Ti6Al4V Prepared via Selective Laser Melting. He J; Li D; Jiang W; Ke L; Qin G; Ye Y; Qin Q; Qiu D Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669578 [TBL] [Abstract][Full Text] [Related]
4. Nano-Mechanical Properties and Creep Behavior of Ti6Al4V Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing. Peng H; Fang W; Dong C; Yi Y; Wei X; Luo B; Huang S Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34206046 [TBL] [Abstract][Full Text] [Related]
5. Computational Assessment of Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion Manufacturing of Ti6Al4V Alloy. Pantawane MV; Ho YH; Joshi SS; Dahotre NB Sci Rep; 2020 May; 10(1):7579. PubMed ID: 32371890 [TBL] [Abstract][Full Text] [Related]
6. Mechanical behavior of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu lattice structures manufactured by laser powder bed fusion and designed for implant applications. Vilardell AM; Takezawa A; du Plessis A; Takata N; Krakhmalev P; Kobashi M; Albu M; Kothleitner G; Yadroitsava I; Yadroitsev I J Mech Behav Biomed Mater; 2021 Jan; 113():104130. PubMed ID: 33049622 [TBL] [Abstract][Full Text] [Related]
7. Enhancing Hardness and Wear Performance of Laser Additive Manufactured Ti6Al4V Alloy Through Achieving Ultrafine Microstructure. Li Y; Song L; Xie P; Cheng M; Xiao H Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182664 [TBL] [Abstract][Full Text] [Related]
8. Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting. Deng J; Chen C; Zhang W; Li Y; Li R; Zhou K Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027909 [TBL] [Abstract][Full Text] [Related]
9. Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology. Liu X; Wang K; Hu P; He X; Yan B; Zhao X Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669893 [TBL] [Abstract][Full Text] [Related]
10. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants. Moiduddin K Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Ti Li K; Wang X; Chen H; Huang X; Zhu G; Tu G Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049002 [TBL] [Abstract][Full Text] [Related]
12. Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties. Bergmueller S; Kaserer L; Fuchs L; Braun J; Weinberger N; Letofsky-Papst I; Leichtfried G Heliyon; 2022 Aug; 8(8):e10171. PubMed ID: 36033262 [TBL] [Abstract][Full Text] [Related]
13. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. Sallica-Leva E; Jardini AL; Fogagnolo JB J Mech Behav Biomed Mater; 2013 Oct; 26():98-108. PubMed ID: 23773976 [TBL] [Abstract][Full Text] [Related]
14. Effect of Laser Energy Density on the Microstructure and Texture Evolution of Hastelloy-X Alloy Fabricated by Laser Powder Bed Fusion. Zhang S; Lei Y; Chen Z; Wei P; Liu W; Yao S; Lu B Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361499 [TBL] [Abstract][Full Text] [Related]
15. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants. Sallica-Leva E; Caram R; Jardini AL; Fogagnolo JB J Mech Behav Biomed Mater; 2016 Feb; 54():149-58. PubMed ID: 26458113 [TBL] [Abstract][Full Text] [Related]
16. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Tamayo JA; Riascos M; Vargas CA; Baena LM Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149 [TBL] [Abstract][Full Text] [Related]
17. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing. Krakhmalev P; Yadroitsev I; Yadroitsava I; de Smidt O Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28972546 [TBL] [Abstract][Full Text] [Related]
18. Additive Manufacturing of Ti-48Al-2Cr-2Nb Alloy Using Gas Atomized and Mechanically Alloyed Plasma Spheroidized Powders. Polozov I; Kantyukov A; Goncharov I; Razumov N; Silin A; Popovich V; Zhu JN; Popovich A Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906691 [TBL] [Abstract][Full Text] [Related]
19. Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V. Ali H; Ghadbeigi H; Mumtaz K J Mater Eng Perform; 2018; 27(8):4059-4068. PubMed ID: 30956520 [TBL] [Abstract][Full Text] [Related]
20. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Parthasarathy J; Starly B; Raman S; Christensen A J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]