These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 32225152)
1. Tomato Root Transformation Followed by Inoculation with Ralstonia Solanacearum for Straightforward Genetic Analysis of Bacterial Wilt Disease. Morcillo RJL; Zhao A; Tamayo-Navarrete MI; García-Garrido JM; Macho AP J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225152 [TBL] [Abstract][Full Text] [Related]
2. Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato. French E; Kim BS; Rivera-Zuluaga K; Iyer-Pascuzzi AS Mol Plant Microbe Interact; 2018 Apr; 31(4):432-444. PubMed ID: 29153016 [TBL] [Abstract][Full Text] [Related]
4. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis. Jacobs JM; Milling A; Mitra RM; Hogan CS; Ailloud F; Prior P; Allen C mBio; 2013 Nov; 4(6):e00875-13. PubMed ID: 24281716 [TBL] [Abstract][Full Text] [Related]
5. Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and Arabidopsis. Seo S; Gomi K; Kaku H; Abe H; Seto H; Nakatsu S; Neya M; Kobayashi M; Nakaho K; Ichinose Y; Mitsuhara I; Ohashi Y Plant Cell Physiol; 2012 Aug; 53(8):1432-44. PubMed ID: 22685082 [TBL] [Abstract][Full Text] [Related]
6. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Hyakumachi M; Nishimura M; Arakawa T; Asano S; Yoshida S; Tsushima S; Takahashi H Microbes Environ; 2013; 28(1):128-34. PubMed ID: 23257909 [TBL] [Abstract][Full Text] [Related]
7. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Colburn-Clifford JM; Scherf JM; Allen C Appl Environ Microbiol; 2010 Nov; 76(22):7392-9. PubMed ID: 20870795 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Ding S; Shao X; Li J; Ahammed GJ; Yao Y; Ding J; Hu Z; Yu J; Shi K Plant Cell Environ; 2021 May; 44(5):1596-1610. PubMed ID: 33547690 [TBL] [Abstract][Full Text] [Related]
10. Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants. Caldwell D; Kim BS; Iyer-Pascuzzi AS Phytopathology; 2017 May; 107(5):528-536. PubMed ID: 28112595 [TBL] [Abstract][Full Text] [Related]
11. l-Histidine Induces Resistance in Plants to the Bacterial Pathogen Ralstonia solanacearum Partially Through the Activation of Ethylene Signaling. Seo S; Nakaho K; Hong SW; Takahashi H; Shigemori H; Mitsuhara I Plant Cell Physiol; 2016 Sep; 57(9):1932-42. PubMed ID: 27335353 [TBL] [Abstract][Full Text] [Related]
12. Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Zheng X; Zhu Y; Liu B; Lin N; Zheng D Microb Pathog; 2017 Dec; 113():144-151. PubMed ID: 29074427 [TBL] [Abstract][Full Text] [Related]
13. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. Jacobs JM; Babujee L; Meng F; Milling A; Allen C mBio; 2012; 3(4):. PubMed ID: 22807564 [TBL] [Abstract][Full Text] [Related]
14. A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Khokhani D; Lowe-Power TM; Tran TM; Allen C mBio; 2017 Sep; 8(5):. PubMed ID: 28951474 [TBL] [Abstract][Full Text] [Related]
15. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Raza W; Wang J; Wu Y; Ling N; Wei Z; Huang Q; Shen Q Appl Microbiol Biotechnol; 2016 Sep; 100(17):7639-50. PubMed ID: 27183998 [TBL] [Abstract][Full Text] [Related]
16. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. Wang G; Kong J; Cui D; Zhao H; Niu Y; Xu M; Jiang G; Zhao Y; Wang W Plant J; 2019 Mar; 97(6):1032-1047. PubMed ID: 30480846 [TBL] [Abstract][Full Text] [Related]
17. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Wei Y; Caceres-Moreno C; Jimenez-Gongora T; Wang K; Sang Y; Lozano-Duran R; Macho AP Plant Biotechnol J; 2018 Jul; 16(7):1349-1362. PubMed ID: 29265643 [TBL] [Abstract][Full Text] [Related]
18. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Ahn IP; Lee SW; Kim MG; Park SR; Hwang DJ; Bae SC Mol Cells; 2011 Jul; 32(1):7-14. PubMed ID: 21710203 [TBL] [Abstract][Full Text] [Related]
19. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Jogaiah S; Abdelrahman M; Tran LS; Shin-ichi I J Exp Bot; 2013 Sep; 64(12):3829-42. PubMed ID: 23956415 [TBL] [Abstract][Full Text] [Related]